Common Dataware of a Proprioceptive Robot Control System
Abstract
The paper is devoted to the peculiarities of the Common Dataware for a significant part of manipulation robots. They have only a proprioceptive feedback system supplying information about position of “arms” and “hands” segments in joints. It outlines disadvantages of the Common Dataware generation based on incremental transducers and sensorless structures. Major parameters that determinate indicators of energy informational practice providing energy conversion into functional displacement of the robot working gear are revealed. The use of a resolver as a primary sensor is recommended, as it has the best noise immunity, shock, vibrations and temperature change resistance compared to other sensors. The “Resolver-to-Digital-Converter (RDC)”combination realizing the time and space binding corresponds to the general relativity postulate. A significant advantage of the proposed RDC solutions is a synthesis of digital equivalents of displacement components, which is implemented without a systematic error based on rigorous trigonometric algorithms. They provide resolution up to
20 bits in a range of 360° at its quadrantal or octantal split.