On a q-Boundary Value Problem with Discontinuity Conditions
Abstract
In this paper, we studied q-analogue of Sturm–Liouville boundary value problem on a finite interval having a discontinuity in an interior point. We proved that the q-Sturm–Liouville problem is self-adjoint in a modified Hilbert space. We investigated spectral properties of the eigenvalues and the eigenfunctions of q-Sturm–Liouville boundary value problem. We shown that eigenfunctions of q-Sturm–Liouville boundary value problem are in the form of a complete system. Finally, we proved a sampling theorem for integral transforms whose kernels are basic functions and the integral is of Jackson’s type.
Published
2021-11-19
Issue
Section
Mathematics