Approximation of Solutions to the Boundary Value Problems for the Generalized Boussinesq Equation

Авторы

  • V. Z. Furaev Автор
  • A. I. Antonenko Автор

Аннотация

Работа посвящена одной из математических моделей соболевского типа фильтрации жидкости в пористом слое. В решении прикладных задач значимыми являются результаты, позволяющие получать их численные решения. Предлагается алгоритм решения начально-краевых задач, описывающих движение свободной поверхности фильтрующейся в слое конечной глубины жидкости: краевые задачи сводятся к задаче Коши для интегро-дифференциальных уравнений, а затем производится их численное интегрирование. Однако, как показывают многочисленные вычислительные эксперименты, указанный алгоритм можно упростить, заменяя интегро-дифференциальные уравнения аппроксимирующими их соответствующими дифференциальными уравнениями Риккати, решения которых может быть найдено также и в явной форме. При этом численные значения решения интегро-дифференциального уравнения заключены между последовательными по времени значениями аппроксимирующими их решениями, что позволяет произвести поточечную оценку погрешностей аппроксимации. Приводятся примеры результатов численного интегрирования и соответствующих аппроксимаций.

Биографии авторов

  • V. Z. Furaev
    кандидат физико-математических наук, доцент
  • A. I. Antonenko
    кандидат физико-математических наук, доцент

Опубликован

2017-12-08

Выпуск

Раздел

Краткие сообщения