An Integral Method for the Numerical Solution of Nonlinear Singular Boundary Value Problems

Авторы

  • M. V. Bulatov Автор
  • P. M. Lima Автор
  • Thanh Do Tien Автор

Аннотация

В статье предложены численные методы решения нелинейной краевой задачи для обыкновенного дифференциального уравнения второго порядка, заданного на полуоси и неразрешенного относительно главной части. Такие задачи описывают плотность микроскопических пузырьков в неоднородной жидкости. В связи с тем, что исходное нелинейное дифференциальное уравнение неразрешено относительно главной части, и 
краевая задача рассматривается на полуоси, то ранее разработанные подходы являются сложными и требуют значительных вычислительных затрат. Именно этот факт послужил мотивацией для данной статьи, где мы описываем альтернативный подход, в котором предложено записать исходную задачу в виде интегро-дифференциального уравнения типа Вольтерра с особенностью в ядре. Итак, исходную задачу мы записали в виде интегро-дифференциального уравнения типа Вольтерра с сингулярным ядром и, в виду специфики исходной задачи, условием на правом конце. Численное интегрирование таких уравнений также достаточно сложная задача. В данной работе мы предлагаем специальные методы решения таких уравнений первого и второго порядков. Приведены численные расчеты модельных примеров по предлагаемым алгоритмам. Данные расчеты показали перспективность дальнейшего развития такого подхода.

Выпуск

Раздел

Математическое моделирование