Численное решение интегральных уравнений Вольтерра I рода с кусочно-непрерывными ядрами

Авторы

  • Денис Николаевич Сидоров Автор
  • Александр Николаевич Тында Автор
  • Ильдар Ринатович Муфтахов Автор

Аннотация

Интегральные уравнения Вольтерра имеют большое значение при построении математических моделей в физике, экономике, экологии и т.д. Важную роль во многих таких моделях играют рассматриваемые в данной статье линейные интегральные уравнения Вольтерра первого рода, у которых ядра претерпевают разрывы первого рода на определенных кривых, проходящих через начало координат. Приводятся теоретические результаты относительно вопросов существования и единственности решений таких уравнений и их регуляризации. Также для таких уравнений Вольтерра первого рода с кусочно-непрерывными ядрами предлагается эффективный численный метод решения, который основан на использовании квадратурной формулы средних прямоугольников. Указана оценка погрешности предлагаемого метода. Для модельных примеров приведены результаты численных расчетов, содержащие информацию о погрешностях и порядке сходимости.

Биографии авторов

  • Денис Николаевич Сидоров
    кандидат физико-математических наук, доцент кафедры≪Вычислительная техника≫
  • Александр Николаевич Тында
     кандидат физико-математических наук, доцент кафедры≪Высшая и прикладная математика≫
  • Ильдар Ринатович Муфтахов
      аспирант кафедры ≪Вычислительная техника≫

Выпуск

Раздел

Программирование