Стохастические неполные линейные уравнения соболевского типа высокого порядка с аддитивным белым шумом
Аннотация
Теория уравнений соболевского типа переживает эпоху своего расцвета. Большое число исследований посвящено детерминированным уравнениям и системам. Однако в натурных экспериментах возникают математические модели, содержащие случайные возмущения, например, в виде белого шума. Поэтому в последнее время все чаще появляются исследования, посвященные стохастическим дифференциальным уравнениям. В данной работе в рамках теории уравнений соболевского типа рассмотрена математическая модель Буссинеска - Лява с аддитивным белым шумом. При изучении модели полезными оказались методы и результаты теории уравнений соболевского типа с относительно $p$-ограниченными операторами. Поскольку модель представлена вырожденным уравнением математической физики, то к ней трудно применимы существующие ныне подходы Ито - Стратоновича - Скорохода. Мы используем уже хорошо зарекомендовавший себя при решении уравнений соболевского типа метод фазового пространства, заключающийся в редукции сингулярного уравнения к регулярному, определенному на некотором подпространстве исходного пространства. В первой части статьи собраны основные факты теории $(L,p)$-ограниченных операторов. Во второй - рассмотрена задача Коши для стохастического линейного уравнения соболевского типа высокого порядка. В качестве примера приведена математическая модель Буссинеска - Лява.