О модельных движениях в задаче управления при функциональных ограничениях на помеху

Авторы

  • Дмитрий Александрович Серков Автор

Аннотация

Рассматривается задача управления системой, описываемой обыкновенным дифференциальным уравнением. Предполагается, что значения управления и помехи в каждый момент времени содержатся в некоторых компактных множествах. Предполагается также, что помехи удовлетворяют некоторым дополнительным ограничениям функционального характера, отражающим природу рассматриваемой задачи. Качество управления оценивается функционалом, заданым на множестве фазовых траекторий рассматриваемой системы, и непрерывным в метрике равномерной сходимости. Ранее установлено, что стратегия с полной памятью разрешает данную задачу управления при компактных ограничениях на помеху и при других функциональных ограничениях, которые к ним сводятся. Вместе с тем, построенные для этих случаев стратегии не являлись универсальными, то есть они зависели от начальной позиции движения системы. Также оставался открытым вопрос о возможности разрешения задач управления с функциональными ограничениями в более узком (классическом) множестве стратегий - позиционных стратегий. В данной статье приводится конструкция оптимальной стратегии, использующая в цепи обратной связи вспомогательную модель управляемой системы и обладающая свойством универсальности. Даны примеры, мотивирующие расширение класса разрешающих стратегий до стратегий с полной памятью.

Биография автора

  • Дмитрий Александрович Серков

    кандидат физико-математических наук, старший на-
    учный сотрудник

    доцент, кафедра ѕВычислительные методы и уравнения
    математической физики

Выпуск

Раздел

Математическое моделирование