Об измерении "белого шума"

Авторы

  • Александр Леонидович Шестаков Автор
  • Георгий Анатольевич Свиридюк Автор

Аннотация

В рамках теории уравнений леонтьевского типа рассмотрена математическая модель измерительного устройства, демонстрирующая эффект механической инерционности. При изучении модели с детерминированным внешним сигналом очень полезными оказались методы и результаты теории уравнений соболевского типа и вырожденных групп операторов, поскольку они позволили создать эффективный вычислительный алгоритм. Теперь в модели предполагается наряду с детерминированным сигналом наличие белого шума. Поскольку модель представлена вырожденной системой обыкновенных дифференциальных уравнений, то к ней трудно применимы существующие ныне подходы Ито - Стратоновича - Скорохода и Мельниковой - Филинкова - Альшанского, в которых белый шум понимается как обобщенная производная винеровского процесса. Вместо этого предлагается новая концепция "белого шума" , равного симметрической производной в среднем (в статье - производной Нельсона - Гликлиха) винеровского процесса, причем подмечено, что в рамках теории Эйнштейна - Смолуховского данная производная совпадает с "обычной" производной броуновского движения. В первой части статьи собраны основные факты теории производной Нельсона - Гликлиха, адаптированные к рассматриваемой ситуации. Во второй - рассмотрена ослабленная задача Шоуолтера - Сидорова и даны точные формулы ее решения. В качестве примера приведена конкретная модель измерительного устройства.

Биографии авторов

  • Александр Леонидович Шестаков
    доктор технических наук, профессор
  • Георгий Анатольевич Свиридюк
    доктор физико-математических наук, профессор

Выпуск

Раздел

Математическое моделирование