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Introduction

In this paper we will be concerned with the telegraph equation

Pu  Ou 0%u
0— +b— +cu=—, T
ot? ot Ox? (T)
where a > 0,b > 0 and ¢ > 0. We will be interested in studying the behaviour of solutions
of this equation for £ > 0 in the case where the coefficient a is small. In particular, our aim
will be to estimate the difference between solutions of (T) and solutions of the diffusion
equation

Such estimates have been studied by a number of authors, including M. Zlamal [11-13],
J. Kisynski [2,3], J. Smoller [7], J. Nedoma [6], and M. Sova [9]. The paper by Zlamal [11]
was inspired by a very specific technical problem. The question of estimating the difference
between solutions of (T) and (D) has also been considered in the context of neutron
transport, see A.M. Weinberg and E.P. Wigner [10, p. 235] and W. Baran [1].

It turned out that it is fruitful to treat (T) as a particular case of a certain type of
differential equations in Banach spaces. For, such an approach allows uniform, systematic
treatment of a number of boundary-value problems for (T) and obtaining in all these cases
the same estimates in terms of the norms of underlying Banach spaces in which the problem
is well-posed. We stress here that boundary-value problems that fit into our framework
may include the solution u and its spatial derivative %, but not its time derivative %—7;.

The difference between the results we present here and those obtained in [3] lies in
the fact that now we are able to consider the case of non-zero c. This is important for
applications e.g. in neuron transport theory. To treat ¢ > 0, we introduce a new operator-
valued function which we denote by V (¢, a,b,c, A). This function will critically intervene
in what we will call the comparison theorem (see [3, p. 372] and Section 3 in the present

paper).
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1. Abstract Telegraph Equation

Let Fy be a Banach space, let £(t),—co < t < o0, be a strongly continuous cosine
operator function with values in the space L(Ey, Ep), and let A be the infinitesimal
generator of this cosine operator function, see M. Sova [8] or J. Kisynski [4]. Let

E; = {u € Ejy : the function (—oo0,00) 3 t — &(t)u € Ej is of class C! in
the norm of Ey}.

When equipped with the norm

dé(t)u
ullg, = [Jullm, + sup ||—=—
o<i<t| dt

Y

Ey

E, is a Banach space; see [4, p. 98|. Let us consider the Cartesian product E; x Ej and let
us agree to denote its elements as column-vectors (Z),u € FEi,v € Ey. Let k be a positive
constant. Then the operators

E(kt) Oftf(k:T)dT
e )

dt

G(t) =

, —oo <t < o0,

belong to L(E; X Ey, E1 X Ey) and form a one-parameter strongly continuous group with
generator

B:(kSA é) D(B) = D(A) x Ey;

see [4, p. 98]. Now, let a,b and ¢ be fixed scalars with a > 0. By the Dyson—Phillips
bounded perturbation theorem, the operator

s 0 1\ (0 1y [0 0
abe = al(A-c) —a'b) \a'A 0 ale a b

generates a strongly continuous one parameter group of operators in E; X FEy. Let us
express the operators in this group in the form of operator-valued matrices

i Soo(t, a, b, C, A) S()l (t, a, b, C, A)
eXp(thb’c) - (Slo(t, a, b, c, A) Sll(t, a, b, c, A) '

Then the S;;(t, a, b, ¢, A) are strongly continuous functions of ¢ with values in L(Ey_;, E1_;).
It is easy to see that the Cauchy problem

a@%—b%—kcu—flu —o0<t< o0
de2 dt Y ’
U(O) = U, (T*)
du
E(O) = U1

has, for any pair of initial conditions ug € D(A) and u; € Fj, a C*(—o0,00; Ey)-class
solution u(t) with values in D(A), given by the formula

U(t) = SOO<ta a, ba ¢, A)UO + 501 (t, a, b, C, A)ul
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This solution is unique in the class C%(0,T; Ey) on each interval (0,T'). To prove this,
suppose that v(t) is another solution of (T*). Then, for any arbitrarily fixed ¢ € (0,7,

T=t

o(t) = u(t) = |Soolt = 7)u(r) + Sar(t = 7) dﬁi)}

=0

Using formulae (3) and (4), given in Section 3, for the derivatives of Sy and Siq, one may
show that the derivative with respect to 7 of the expression in the brackets is zero, and this
implies that v(t) = u(t). Another proof of uniqueness may be obtained by eliminating the
first derivative in the differential equation from (T*) with the substitution u(t) = ¢~ za'v(t)
and thereby reducing the problem to the case considered in [4, p. 96].

The operator-valued functions S;; were build from the cosine function £(¢) via the
group G(t) by applying the Dyson—Phillips bounded perturbation theorem. One can show,
and this will be done below, that if b > 4ac (a condition which henceforth will be tacitly
assumed), then

b / VA T
SOl(tv a,b,c, A) = e 2a’ Jo (2_ 2 — 7—2> 3 <_) dr, (1)
0/ 2a Va

where A = b? — 4ac and Jy(iz) is the Bessel function of type zero with purely imaginary
argument, given by the series

Joliz) = ((5;!;2

k=0

An immediate consequence of equality (1) and formula (4) from Section 3 is

Soo(t,a,b,c, A) = ((if

()t (2 (B )

0

b) Soi(t,a,b,c,A) =

Hence, we see that the solution to (T*) is given by the formula

u<t>—e£t§(t)u0+e2a/( 2 (\Fﬁ) ()i s

+e2bat/J0 ( fm) (\/a> uy dr.

0

We now prove (1) by verifying that the right-hand side of the formula is a solution of
an appropriate uniquely solvable Cauchy problem. For u; € E;, we have

( d? d
(a— +b— + c) So1(t,a,b,c, A)uy = ASp(t,a,b,c, A)uy,

de? dt
S()l (O, a, b, C, A)Ul = 0, (*)
d
E SOl (t7 a, b7 ¢, A>u1 = Uz,
\ t=0
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and, as explained above, this system has a unique solution. Let
K(t,7)=e" 2t J ( \/_\/72 —t2>

Now, all we need is to check that the integral

Sor()uy = ] K(t,7)¢ (%) wy dr

satisfies (x). The condition 301(0)u1 = 0 is obviously met. Moreover,

o = e (22 e [ 2 () mar -
= oot ( >u1+/8ttT (a>u1dr

and so %‘t:o So1(t)u; = uy. We are thus left with checking that the differential equation
in system () holds. To this end, we calculate

d? b _by t _by d t
@501( Jur =750 § (%) upt+e 2 Ef (%) uy +
0K t / PK t

and find that

2

d d ~ b _», OK t b, d t
—4b—dc—A = |—e 2t —— — “aal ¢ —
(a D +b dt+c )501(t)u1 {ze + pr (t, t)} £ (\/E) Uy tae dtg (ﬁ) uy +
t

+/ (ag—; n ba% + c) K(t, 7)€ (%) ur dt — /K(t,r)Ag (%) u dr.

The last integral in this formula can be transformed by means of integration by parts
as follows:

QJQD

_ aK(t,t)%ﬁ (%) wy — a2 }T( (t,7)¢ <%) ” :Z +a / ot (%) uy dr
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Since 25(¢,0) = 0, we thus obtain

( j; + bc‘f +e— A) Sor(t)uy = a{%e—;;t + )+ E(“)}f (%) -
*j Gt = ot w05+ eten)| €

4

ot? or? ot

:/t{f;ff(t,ﬂ 8822(15 T)+b88—K(t 7) + cK(t, 7)}5(%) uy dr.

0

It is now clear that the proof will be complete once we show that

K 82[( 0K
aw(tﬁ) = —(t,7) +ba—(t )+ cK(t,7) =0 )

for 0 < 7 <t Let Ko(t,7) = Jo( VA2 — ) Then we have K (t,7) = e 2a'Ko(t, 7),

and equation (}) takes the equivalent form

) b 2 52 0 b
7)) sl a2 2 Ko(t,7) =
[ <3t Za) “orz Tt <8t 2“) Fo| ot =0
which is the same as o2 2 4
— 4ac
¢ {8152 or2 4a? 1 i) =0,
or 82 82 A
*
(@ T F) Folt:m) = =
Given that
2
02K VAt ¢
O(t, 7_) _ J()(Z{L') +
o2 2a /12 —72 ) da? N =
VA 1 t* d
+ _ 3 JE— J()(Z.Z‘)
2a 2 — 12 ( 12 — 7—2) dz m:%m
and

2
0K, VA d?

20 (tu T) = . 5 J()(ZQZ) +
87’ 2a \/t2—7’2 dz z:T\/aZm

VA -1 72 d
2a \ 12 =72 (m)?’ dz

Jo(ix),
P/

is equivalent to

d? 1 d .

we see that equation (%)
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and that the latter equation holds can be checked immediately by differentiating the series

hiio) =3 (f,f!g?

term by term.

2. Abstract Diffusion Equation

Along with the second order problem (T*) we consider the initial value problem of
order one

du
b— =A t>0
1 + cu Uu, > U, (D*)
u(0) = up.

The solution of this problem is

u(t) = e b exp <£A) :

where exp (tA), t > 0, is the one-parameter semigroup of operators in the space FEj
generated by A. This semigroup may be simply expressed in terms of the cosine family
from the previous section, namely,

exp(tA) =

1 [ e |
2\/E_/e t&(r)dr, t>0; (2)

see J. Kisyniski [5, p. 9].

3. Reducing the Problem of Estimating the Difference Between
Solutions of Problems (T*) and (D*) to a Comparison Theorem

From exp(tBgpc)D(Bape) = D(Bap,) and

d Ug Ug Uo
— tB =B tB = tB B
dt eXp( a,b,c) <U,1> a,b,c eXp( a,b,c) (Ul) eXp( a,b,c) a,b,c (u

1

with the latter equality holding for ug € D(A) and u; € E, and taking the form

(S SO () = () (B S (1) -

_ Soo (t) S()l (t) 0 1 Uo
Sio(t) Su@)) \a(A—c) —a'b) \u,
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we deduce the inclusions SpoD(A) C D(A), So1 By C D(A), S10D(A) C E; and S;1E1 C
Ey, and equalities

dSpou

N _ 1ty = Sina™ (A = o), 3)
dSp1u b

3; L. Stiur = Spour — 5501111; (4)
ds b

Clliuo = a_l(A - C)Soouo - Eslou[) == Slla_l(A - C)UOa (5)
dSiu b b

(; LI a A —c)Spu; — ESHul = Sjouy — asllul- (6)

If up € D(A), then it follows from (3) and (6) applied with u; = ug that
Sma_l(A - C)U() = a_l(A - C)SOl’LLO = Sl()Uo. (7)

On the other hand, by (4), (5) and (7) it is clear that if Sy is extended by continuity to
an operator in L(Ey, Ey), which is possible by (4), then, for ug € D(A), we have

SooAUO = ASO()UO- (8)

By (3) and (5), we see that for ug € D(A) the function u(t) = Spo(t)uo satisfies the
equation
du(t)
dt
Since u(0) = uy, it follows that

=01 (A~ c)u(t) — S (t)b (A — c)uo.

Soo(t)ug = exp ([—)(A - c)) o — / exp (TT(A - c)) S (1)~ (A = Jupdr.  (9)

To simplify notation, let

t

t
U(t,a,b,c,A)z/exp(

0

—-T

(A— c)) Si (7, a,b, ¢, A)dr.

In view of (9), the difference between the solution
uq(t) = Soo(t, a, b, c, A)ug + So1(t, a, b, ¢, A)uy

to problem (T*) and the solution

t
u(t) = exp (E(A - c)) U
to problem (D*) satisfies the estimate

Hua(t) - u(t)HEO < HU<t> a, b> C, A)b_l(A - C)UOHEO + HSOl<t7 a, b7 c, A)ul”Eo (10)
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for up € D(A), u; € Ey and t > 0. We will also obtain a similar estimate for the difference

duc?t(t) _ dz(tt)_ Since S11(0)u; = uy, (6) implies that

t
Sn<t)ul = e‘gtul + /G_Z(t_T)Slo(T)ul dr.
0

If uy € D(A), then by (3) we may write
t
511<t)ul = e_gtul + — /e_“(t_T)Sol (T)b_l(A — C)'Lbl dr. (11)
0

If ug € D(A?) and u; € D(A), then, by (3) and (4),

dug(t)  du(t)

e et — b YA —
m i e o (up —b (A —c)ug)

equals

Sho(t)to + Sar (Db (A — ¢)up — exp (%(A - c)) b (A = )ug +
+ (Sn(t) - e—%t> (ur — b7 (A — c)up)
which in turn, given that, by (5) and (8),
S1o(t)to + St (D6~ (A — chuo = b~ (A — ¢)Suo(t)tto = Soo(t)b~ (A — ¢) Bu,

is equal to
Soo(t)b (A — c)ug — exp <£(A — c)) b~ (A —c)up+ (Sll(t) — e_§t> (ur — b (A = c)uo)

and this, in view of (9) and (11), finally equals

—U(t,a,b,c, A) b~ (A — c)]2 Ug +
¢

+ g /e_Z(t_T)Sm (1,a,b,¢, A)b" (A —¢) [ug — b~ (A = ¢)uo] dr.

0

Hence, under the assumption that ug € D(A?) and u; € D(A), we obtain the following
estimate:

- b -, <
< HU(t, a,b,c, A) b (A=) uo|  + (12)
0

+ sup H501 (1,a,b,¢c, )b~ (A —¢) [ul —b A - c)uo}

S I,

In view of inequalities (10) and (12), the problem of estimating the difference w,(t) —
u(t) reduces to estimating the norms of operator-valued functions U(t,a,b,c, A) and
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S11(t,a,b,c, A). The case of U will not be treated directly, but will be tackled by means
of the auxiliary function V' defined by

b—+VA

2a

t
V(t,a,b,c,A) =U(t,a,b,c,A) + /U(T, a,b,c, A)dr. (13)
0

Viewing (13) as a Volterra-type equation with U as an unknown function, we easily deduce
that

VA —b

2a

¢
U(t,a,b,c,A) =V (t,a,b,c, A) + /e\/gz_b(t_T)V(T, a,b,c, A)dr. (14)
0

@;" < 0, (14) implies immediately that

Since

[U(t,a,b,¢, A)|| <2 sup [[V(t,a,b,c, A)|.

0<r<t

However, this inequality will not be used in the context of the telegraph equation (%) which
is of main interest to us, as in this case other, more subtle estimates are available and will
be exploited that result from special properties of V.

The following theorem is the key to estimating the norms of operator-valued functions

V(t,a,b,c, A) and Sp;(t,a,b,c, A).

Comparison Theorem. Let a > 0, b > 0 and ¢ > 0 be such that A = b* — 4ac > 0, and
let k > 0. Let S;;(t,a,b,c,k?) be the real functions defined via the equality

2 2 k2 — C
Slo(t,(l, b, C,k’ ) Sll(t,CL, b, C,k’ ) b

(Soo(t, a, b, C, k2) 801 (t, a, b, C, k2)) — exp " 0 1

a

and let (compare (13))

V(t,a,b,c,k?) = e T % Si(t,a,b, c, k) + xe b xS (ta,b,c k?),

b —V A K2—c
2a
where x denotes convolution on the half-line t > 0. If

1€t e < Meosh(k),  —oo <t < oo, (15)

with M = const > 1, then

t t
exp <—(A - c)) < M exp (—(k2 - c)) : t>0, (16)
b L(Eo,Eo) b
1S00(t, @, b, ¢, Al iy 120) < M Soolt, a, b, ¢, k?), t>0, (17)
||5’01(t,a,b, C, A)HL(EO,EO) S MSOl(t,a,b, C, l{?Q), t Z 07 (18)
and
IVt a,b, ¢, Al gy iy < MV(Ea,b, ¢, k), t>0. (19)
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4. Proof of the Comparison Theorem

By (2), we have

|| exp(tA)]] \/_ / e T ||§ ) dr < M / e~ @ cosh(kt) dr = M exp(tk?),

and so

t 7C

b
()l

kT
<M/Ktr cosh(\/a> dr = M Sy (t,a,b, c, k?),

Similarly, by (1),

t
100t 0, b, ¢, A < /K(t,r)

because the kernel K(t,7) = e 2l (i‘é—?\/ﬂ —t2) is non-negative for 0 < 7 < ¢.

Inequalities (16) and (18) are thus proved. Inequality (17) is established in a similar
manner. The proof of (19) is more complicated. According to a well-known result from the
theory of semigroups of operators, there is a constant Ay such that for A > Ay we have

b(bA+c—A) " = (A= /e exp < c)) dt (20)
0
and -
(A= Buye) ' = / M exp (tBay.) dt. (21)
0
Since (15) implies that
AN — A = /e‘”f(t) dt for A >k, (22)
0
it follows that for A so large that aA® + b\ + ¢ > k% we have
-1
1 B 0 1 B
(A= Base) ™ = ()\ (al(A —c¢) —a'h ) o
(a4 b)(aN+ A +c— A a(aN+bA+c— AT
T\ A=-)@N+ b +c— A aAaN?+bA+c— A)!
This together with (21) implies the existence of a constant A; such that
/eMSn(t, a,b,c, A) = aX(aX* + b +c— A)7' for A > A, (23)
0
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Since the Laplace transform of the convolution of two functions (on the half-line 0 <t <
00) is the product of the transforms of these functions, equality (13) written as

V(t,a,b,c,A) = exp ((E;(A — c)) x S11(t,a,b, ¢, A) +

b— VA
2a

* eXp (%(A — c)> * S11(t,a,b, ¢, A)
and combined with (20) and (23) implies that

b— VA

a

/e_’\tV(t, a,b,c, A)dt = a ()\ + > (A=b"1(A- c))_l (aX* + DX +c— A)?
0

for A > Ay = max(Ag, A1). Introducing the functions

c\ 2
) = (A+7)"
g2(\) = (aN* + b\ + ¢)z2,
A+ by

m\»—t

h(A\) =a

)

N

1
(A +£)2 (aX? + X +¢)
we may rewrite the last identity as

o0

/e_’\tV(t, a,b,c, A)dt = h(A\)gi1(N) ([g1(V)]* — A)

0

-1 -1

g2(A) ([920\)]2 - A)

for A > Xo. But now, by (22), we see that

/e MV (t,a,b,c, A)d /e 1Nt () dt/egz(’\)sf(s) ds =
0 0 0

o (24)
//e_gl o e+ )+ (¢ — 5)] di ds

for A > Ay. Analogously,

o0

I 1
/e_’\tV(t, a,b,c,k*)dt = h(\) / / e_gl(’\)t_g2()‘)55[cosh(t + s) + cosh(t — s)] dtds. (25)

0

Thus, for each u € Fy such that ||u|| = 1 and each bounded linear functional f on Ej such
that || f|| = 1, we have

/e/\t [M V(t,a,b,c, k2) —(f,V(t,a,b,c, A)uﬂ dt =
0

o oo (26)
\) / / e WMy (¢ ) dt ds
0 0
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for A > Ao, while, by (15), the function
U(t,s) = %M[cosh(t + s) + cosh(t — )] — %(f, [E(t+s)+&(t— s)]u)

is non-negative. Let

//e_g1 =2 Ns () 5) dt ds
00

and let us assume for now that

the function F/(—\) is completely monotone in the interval —oo < A < —\q, (27)
i.e., that dng;,\) >0forallmn=0,1,... and A € (—o0, —\y).

It follows (26) and (27), by virtue of the Post—-Widder formula for inversion of the
Laplace transform, that

9 o
MV(t,CL,b, ¢,k ) - <f’ V(t,CL, b, c, A)U) o nh—r>I<>lo (n — 1)'

() e 20

for each ¢ > 0. Since the only restriction imposed on w and f was ||u|| = ||f|| = 1, this
results in inequality (19).

The idea of exploiting the Post-Widder formula to obtain estimates as above is taken
from the paper by M. Sova 9], who was the first to study the asymptotic behaviour,
as a — 0, of solutions of initial-value problem of type (T*) in a non-Hilbert space. The
idea to use completely monotone functions is due to the author of the present paper; this
approach simplifies the analysis and sharpens the estimates.

We now present the proof of (27). It suffices to show that

W>O forn=0,1,... and A € (—o0, —\s), (a)
W>O forn=0,1,... and X € (—o0, —\2), (b)

and
%ﬂ) forn=0,1,... and A € (=00, —\s). (c)

That (a) is true follows immediately from the formula

PO (e g (e )

b 222 2

For the proof of (b) we calculate, for A < 0,

1

d 4, L (b ) o
d)\[ g2(—\)] = ﬁ(a)\ bA + ¢) —<2 a/\> (a/\ b/\—i-c) >0
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and
d2 ) (b S s
W[—gg(—/\)] = —a(a\* —bA\+c)"2 + <§ - aA) (aX* —=bA+c) * =
=— (a\ = bA+ c)_% =—a 2 (u — )\)_% (2 — /\)_% > 0,
where p; = b;‘({z >0 and g = bg‘({E > 0. Since
d 3 3 5 2k +1 2k+3
W(Pﬂ )225'5 5 (j —A)" 2

for k=0,1,...,7 =1,2 and A < 0, Leibniz’s formula implies that

d)2+n T4 k d\F d\n—*

>0
k=0

forA<Oandn=1,2,....
We are left with showing (c). To this end, we observe that

(SIS

1 P E— : b () -
(£=A)%az (m —A)2 (up — A)? <5_A)

Since n "
11 3 2k -1 _2kt1
W(’L@_/\)zzi.g... 5 (g — A)™ 2
for A\<0Oand k=1,2,..., Leibniz’s formula shows that our task reduces to proving that
& [ — A\ ?
W(%—)\) >0 forA<Oand k=0,1,.... (c*)
Inequality (c*) results from
b—+vA
Dmy  CobVA ey (28)

S
[\
IS
(|

since b2 — 2ac > bV/A; the latter condition may easily be checked by taking squares of
both sides. By (28), we have

d (m—A\F d (S4+D=X\* 1/ ¢=x \*! D
dA\6=X) A\ £-) C2\f+D =X (e-2)?
c e oy
NN
G5+ b
and thus we see that inequality (c*) is true for k¥ = 0,1. To prove it for k = 2,3,...,
one needs to apply Leibniz’s formula in a way similar to that used in our proof of (b).

Hence, inequality (c) is seen to be true. The proof of the comparison theorem is thereby
completed.
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5. Consequences of the Comparison Theorem in the Case £ =0
We have

t
c b - A
V(t,a,b,c,0) =e ' x | Syi(t,a,b,c,0)+ 2;/_/511(T,a, b,c,0)dr | =
0

c b - A c
—e bl x (Sll(t, a, b, C, O) + 2\/_501 (t, a, b, C, 0)) —e bl x U(t),

where

b— VA

u<t) = Sll(t? a, b7 Gy 0) + S(]l(tv a, b7 ¢, 0)

is the solution of the equation
av” +bu' +cu=0

with initial conditions

u(0) =1,
b— VA b b—+A b+ VA
o) s s bVA _ b b=VE b4 VA
2a a 2a 24
Therefore we have -,
u(t) = e_ 2a t
and so t |
c c_b+VA . B VE
V(t,a,b,c,0) = e_bt/e<b bJr?GA>TdT = e_bt/e (DJF{F)rdT <
0 0
< efﬁt < a e*%t
- D+YAT VA
Also

t
/e@fl’(t—T)V(T, a,b,c,0)dr = /eqa_bTV(t —7,a,b,¢,0)dr <
J 0

t t
a VA-b a
< —/e 2 e 3T dr = —e_gt/e_DT dr.

0 0

Assume that inequality (15) holds with & = 0. Then, in view of the above, inequality (19)
and equality (14), we obtain the estimate

t
c a b—+vVA
A vl CRa L =
' v/ 2a
A 0

(29)
¢ a c
<e ' M—— 1+—t> ,
VA ( VA
for we have %Z < \/LZ‘ Since u(t) = Sp(t,a,b,c,0) is the solution of the equation

au” + bu' + cu = 0 satisfying the conditions u(0) = 0 and «/(0) = 1, we have
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So1(t,a,b,c,0) = (v, — 1) t(et — e2'), where v = %ﬁ and vy = %Z, which

implies that Soi(¢,a,b,c,0) < \/LE for t > 0. In view of inequality (18), we thus have
a

Combining together (10), (12), (29) and (30), we finally obtain the following estimates of
the difference between the solution u,(t) of problem (T*) and the solution u(t) of problem
(D)

(i) if ug € D(A) and u; € Ey, then

fia(®) = 0l < < {e (1 20} 107 = uals, + sl |

for t > 0;
(ii) and if, furthermore, vy € D(A?) and u; € D(A), then also

H d“;ft) - d‘éf) — o4t (uy — bY(A — cug) I
< \/—_M { < - Tt) 1167 (A = &)uollm, + (167" (A = C)[ulo — b (A~ C)UO]HEU}

for t > 0.
For ¢ = 0 these inequalities are identical to those obtained in the paper [3].

References

1. Baran W. Stabilnosé schematow réznicowych aproksymujgcych zalezne od czasu réwnania:
transportu, telegrafistow @ dyfuzji. Instytut Badan Jadrowych, Zaklad Obliczern Numerycznych
i Teorii Transportu, 1972. (in Polish)

2. Kisyriski J. Sur les équations hyperboliques avec petit parametre. Colloguium Mathematicum,
1963, vol. 10, no. 2, pp. 331-343. (in French) DOI: 10.4064/cm-10-2-331-343

3. Kisynski J. On a Second Order Cauchy’s Problem in a Banach Space. Bulletin Polish Acad.
Sci. Math. Series: Sci. Math. Astr. Phys., 1970, vol. 18, pp. 371-374.

4. Kisynski J. On Cosine Operator Functions and One-Parameter Groups of Operators. Studia
Mathematica, 1972, vol. 44, no. 1, pp. 93-105. DOI: 10.4064/sm-44-1-93-105

5. Kisyriski J. On the Connections between Cosine Operator Functions and One Parameter Semi-
Groups and Groups of Operators. Warsaw, Wydawnictwo Uniwersytetu Warszawskiego, 1972,
no. 6, pp. 1-9.

6. Nedoma J. Initial Cauchy Problem for Hyperbolic Equations with Small Parameter. Casopis
pro péstovdani matematiky, 1967, vol. 92, no. 4, pp. 392-417.

7. Smoller J.A. Singular Perturbations and a Theorem of Kisyniski. Journal of Mathematical
Analysis and Applications, 1965, vol. 12, pp. 105-114. DOI: 10.1016,/0022-247X(65)90058-2

8. Sova M. Cosine Operator Functions. Rozprawy Matematyczne, 1966, vol. 49, pp. 1-47.

9. Sova M. Equations hyperboliques avec petit parametre dans les espaces de Banach généraux.
Colloguium Mathematicum, 1970, vol. 21, no. 2, pp. 303-320. (in French) DOI: 10.4064/cm-
21-2-303-320

148 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2018, vol. 11, no. 3, pp. 134-149




NCTOPMYECKUNE SAMETKNI

10. Weinberg A.M., Wigner E.P. The Physical Theory of Neutron Chain Reactors. Chicago,
University of Chicago Press, 1958.

11. Zldmal M. On the Mixed Problem for a Hyperbolic Equation with a Small Parameter.
Czechoslovak Mathematical Journal, 1959, vol. 9, no. 2, pp. 218-242. (in Russian)

12. Zlamal M. Sur ’équation des télégraphistes avec un petit parametre. Atti Accad. Naz. Lincei.
Rend. Cl. Sci. Fis. Mat. Nat., 1959, vol. 27, no. 8, pp. 324-332. (in French)

13. Zldmal M. The Mixed Problem for Hyperbolic Equations with a Small Parameter,
Czechoslovak Mathematical Journal, 1960, vol. 10, no. 1, pp. 83-122. (in Russian)

Bectunk FOYpI'Y. Cepusi <MaTeMaTH4YeCKOe MOIEIMpPOBAHME 149

u nporpammupoBanues (Becrunk FOYpI'Y MMII). 2018. T. 11, Ne 3. C. 134-149



