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Introduction

In this paper we will be concerned with the telegraph equation

a
∂2u

∂t2
+ b

∂u

∂t
+ cu =

∂2u

∂x2
, (T)

where a > 0, b > 0 and c ≥ 0. We will be interested in studying the behaviour of solutions
of this equation for t ≥ 0 in the case where the coe�cient a is small. In particular, our aim
will be to estimate the di�erence between solutions of (T) and solutions of the di�usion

equation

b
∂u

∂t
+ cu =

∂2u

∂x2
. (D)

Such estimates have been studied by a number of authors, including M. Zl�amal [11�13],
J. Kisy�nski [2,3], J. Smoller [7], J. Nedoma [6], and M. Sova [9]. The paper by Zl�amal [11]
was inspired by a very speci�c technical problem. The question of estimating the di�erence
between solutions of (T) and (D) has also been considered in the context of neutron
transport, see A.M. Weinberg and E.P. Wigner [10, p. 235] and W. Baran [1].

It turned out that it is fruitful to treat (T) as a particular case of a certain type of
di�erential equations in Banach spaces. For, such an approach allows uniform, systematic
treatment of a number of boundary-value problems for (T) and obtaining in all these cases
the same estimates in terms of the norms of underlying Banach spaces in which the problem
is well-posed. We stress here that boundary-value problems that �t into our framework
may include the solution u and its spatial derivative ∂u

∂x
, but not its time derivative ∂u

∂t
.

The di�erence between the results we present here and those obtained in [3] lies in
the fact that now we are able to consider the case of non-zero c. This is important for
applications e.g. in neuron transport theory. To treat c > 0, we introduce a new operator-
valued function which we denote by V (t, a, b, c, A). This function will critically intervene
in what we will call the comparison theorem (see [3, p. 372] and Section 3 in the present
paper).
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1. Abstract Telegraph Equation

Let E0 be a Banach space, let ξ(t),−∞ < t < ∞, be a strongly continuous cosine
operator function with values in the space L(E0, E0), and let A be the in�nitesimal
generator of this cosine operator function, see M. Sova [8] or J. Kisy�nski [4]. Let

E1 = {u ∈ E0 : the function (−∞,∞) ∋ t 7→ ξ(t)u ∈ E0 is of class C1 in
the norm of E0}.

When equipped with the norm

∥u∥E1 = ∥u∥E0 + sup
0≤1≤t

∥∥∥∥dξ(t)udt

∥∥∥∥
E0

,

E1 is a Banach space; see [4, p. 98]. Let us consider the Cartesian product E1×E0 and let
us agree to denote its elements as column-vectors

(
u
v

)
, u ∈ E1, v ∈ E0. Let k be a positive

constant. Then the operators

G(t) =

 ξ(kt)
t∫
0

ξ(kτ) dτ

dξ(kt)
dt

ξ(kt)

 , −∞ < t < ∞,

belong to L(E1 ×E0, E1 ×E0) and form a one-parameter strongly continuous group with
generator

B =

(
0 1

k2A 0

)
, D(B) = D(A)× E1;

see [4, p. 98]. Now, let a, b and c be �xed scalars with a > 0. By the Dyson�Phillips
bounded perturbation theorem, the operator

Ba,b,c =

(
0 1

a−1(A− c) −a−1b

)
=

(
0 1

a−1A 0

)
−
(

0 0
a−1c a−1b

)
generates a strongly continuous one parameter group of operators in E1 × E0. Let us
express the operators in this group in the form of operator-valued matrices

exp(tBa,b,c) =

(
S00(t, a, b, c, A) S01(t, a, b, c, A)
S10(t, a, b, c, A) S11(t, a, b, c, A)

)
.

Then the Sij(t, a, b, c, A) are strongly continuous functions of t with values in L(E1−j, E1−i).
It is easy to see that the Cauchy problem

a
d2u

dt2
+ b

du

dt
+ cu = Au, −∞ < t < ∞,

u(0) = u0,

du

dt
(0) = u1

(T∗)

has, for any pair of initial conditions u0 ∈ D(A) and u1 ∈ E1, a C2(−∞,∞;E0)-class
solution u(t) with values in D(A), given by the formula

u(t) = S00(t, a, b, c, A)u0 + S01(t, a, b, c, A)u1.
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This solution is unique in the class C2(0, T ;E0) on each interval (0, T ). To prove this,
suppose that v(t) is another solution of (T∗). Then, for any arbitrarily �xed t ∈ (0, T ),

v(t)− u(t) =

[
S00(t− τ)v(τ) + S01(t− τ)

dv(τ)

dτ

]∣∣∣∣τ=t

τ=0

.

Using formulae (3) and (4), given in Section 3, for the derivatives of S00 and S11, one may
show that the derivative with respect to τ of the expression in the brackets is zero, and this
implies that v(t) = u(t). Another proof of uniqueness may be obtained by eliminating the

�rst derivative in the di�erential equation from (T∗) with the substitution u(t) = e−
b
2a

tv(t)
and thereby reducing the problem to the case considered in [4, p. 96].

The operator-valued functions Sij were build from the cosine function ξ(t) via the
group G(t) by applying the Dyson�Phillips bounded perturbation theorem. One can show,
and this will be done below, that if b2 > 4ac (a condition which henceforth will be tacitly
assumed), then

S01(t, a, b, c, A) = e−
b
2a

t

t∫
0

J0

(
i

√
∆

2a

√
t2 − τ 2

)
ξ

(
τ√
a

)
dτ, (1)

where ∆ = b2 − 4ac and J0(ix) is the Bessel function of type zero with purely imaginary
argument, given by the series

J0(ix) =
∞∑
k=0

(
1
2
x
)2k

(k!)2
.

An immediate consequence of equality (1) and formula (4) from Section 3 is

S00(t, a, b, c, A) =

(
d

dt
+

b

a

)
S01(t, a, b, c, A) =

= e−
b
2a

tξ

(
t

2a

)
+ e−

b
2a

t

t∫
0

(
∂

∂t
+

b

2a

)
J0

(
i

√
∆

2a

√
t2 − τ 2

)
ξ

(
τ√
a

)
dτ.

Hence, we see that the solution to (T∗) is given by the formula

u(t) = e−
b
2a

tξ

(
t√
a

)
u0 + e−

b
2a

t

t∫
0

(
∂

∂t
+

b

2a

)
J0

(
i

√
∆

2a

√
t2 − τ 2

)
ξ

(
τ√
a

)
u0 dτ +

+ e−
b
2a t

t∫
0

J0

(
i

√
∆

2a

√
t2 − τ 2

)
ξ

(
τ√
a

)
u1 dτ.

We now prove (1) by verifying that the right-hand side of the formula is a solution of
an appropriate uniquely solvable Cauchy problem. For u1 ∈ E1, we have

(
a
d2

dt2
+ b

d

dt
+ c

)
S01(t, a, b, c, A)u1 = AS01(t, a, b, c, A)u1,

S01(0, a, b, c, A)u1 = 0,

d

dt

∣∣∣∣
t=0

S01(t, a, b, c, A)u1 = u1,

(∗)
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and, as explained above, this system has a unique solution. Let

K(t, τ) = e−
b
2a

tJ0

(
i

√
∆

2a

√
τ 2 − t2

)
.

Now, all we need is to check that the integral

S̃01(t)u1 =

t∫
0

K(t, τ)ξ

(
τ√
a

)
u1 dτ

satis�es (∗). The condition S̃01(0)u1 = 0 is obviously met. Moreover,

d

dt
S̃01(t)u1 = K(t, t)ξ

(
t√
a

)
u1 +

t∫
0

∂K

∂t
(t, τ)ξ

(
τ√
a

)
u1 dτ =

= e−
b
2a

tξ

(
t√
a

)
u1 +

t∫
0

∂K

∂t
(t, τ)ξ

(
τ√
a

)
u1 dτ,

and so d
dt

∣∣
t=0

S01(t)u1 = u1. We are thus left with checking that the di�erential equation
in system (∗) holds. To this end, we calculate

d2

dt2
S̃01(t)u1 = − b

2a
e−

b
2a

tξ

(
t√
a

)
u1 + e−

b
2a

t d

dt
ξ

(
t√
a

)
u1 +

+
∂K

∂t
(t, t)ξ

(
t√
a

)
u1 +

t∫
0

∂2K

∂t2
(t, t)ξ

(
t√
a

)
u1 dτ

and �nd that(
a
d2

dt2
+b

d

dt
+c− A

)
S̃01(t)u1 =

[
b

2
e−

b
2a

t+
∂K

∂t
(t, t)

]
ξ

(
t√
a

)
u1+ae−

b
2a

t d

dt
ξ

(
t√
a

)
u1 +

+

t∫
0

(
a
∂2

∂t2
+ b

∂

∂τ
+ c

)
K(t, τ)ξ

(
τ√
a

)
u1 dt−

t∫
0

K(t, τ)Aξ

(
τ√
a

)
u1 dτ.

The last integral in this formula can be transformed by means of integration by parts
as follows:

t∫
0

K(t, τ)Aξ

(
τ√
a

)
u1 dτ = a

t∫
0

K(t, τ)
d2

dτ 2
ξ

(
τ√
a

)
u1 dτ =

= aK(t, τ)
d

dτ
ξ

(
τ√
a

)
u1

∣∣∣∣τ=t

τ=0

− a

t∫
0

∂K

∂τ
(t, τ)

d

dτ
ξ

(
τ√
a

)
u1 dτ =

= aK(t, t)
d

dt
ξ

(
t√
a

)
u1 − a

∂K

∂τ
(t, τ)ξ

(
τ√
a

)
u1

∣∣∣∣τ=t

τ=0

+ a

t∫
0

∂2K

∂τ 2
(t, τ)ξ

(
τ√
a

)
u1 dτ.
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Since ∂K
∂τ

(t, 0) = 0, we thus obtain(
a
d2

dt2
+ b

d

dt
+ c− A

)
S̃01(t)u1 = a

[
b

2a
e−

b
2a

t +
∂K

∂t
(t, t) +

∂K

∂τ
(t, t)

]
ξ

(
t√
a

)
u1 +

+

t∫
0

[
a
∂2K

∂t2
(t, τ)− a

∂2K

∂τ 2
(t, τ) + b

∂K

∂t
(t, τ) + cK(t, τ)

]
ξ

(
τ√
a

)
u1 dτ =

=

t∫
0

[
a
∂2K

∂t2
(t, τ)− a

∂2K

∂τ 2
(t, τ) + b

∂K

∂t
(t, τ) + cK(t, τ)

]
ξ

(
τ√
a

)
u1 dτ.

It is now clear that the proof will be complete once we show that

a
∂2K

∂t2
(t, τ)− a

∂2K

∂t2
(t, τ) + b

∂K

∂t
(t, τ) + cK(t, τ) = 0 (∗∗)

for 0 ≤ τ ≤ t. Let K0(t, τ) = J0

(
i
√
∆

2a

√
t2 − τ 2

)
. Then we have K(t, τ) = e−

b
2a

tK0(t, τ),

and equation (∗∗) takes the equivalent form[
a

(
∂

∂t
− b

2a

)2

− a
∂2

∂τ 2
+ b

(
∂

∂t
− b

2a

)
+ c

]
K0(t, τ) = 0,

which is the same as

a

[
∂2

∂t2
− ∂2

∂τ 2
− b2 − 4ac

4a2

]
K0(t, τ) = 0,

or (
∂2

∂t2
− ∂2

∂τ 2
− ∆

4a2

)
K0(t, τ) = 0. ( ∗∗∗)

Given that

∂2K0

∂t2
(t, τ) =

(√
∆

2a

t√
t2 − τ 2

)2
d2

dx2

∣∣∣∣
x=

√
∆

2a

√
t2−τ2

J0(ix) +

+

√
∆

2a

(
1√

t2 − τ 2
− t2(√

t2 − τ 2
)3
)

d

dx

∣∣∣∣
x=

√
∆

2a

√
t2−τ2

J0(ix)

and

∂2K0

∂τ 2
(t, τ) =

(√
∆

2a

τ√
t2 − τ 2

)2
d2

dx2

∣∣∣∣
x=

√
∆

2a

√
t2−τ2

J0(ix) +

+

√
∆

2a

(
−1√
t2 − τ 2

− τ 2(√
t2 − τ 2

)3
)

d

dx

∣∣∣∣
x=

√
∆

2a

√
t2−τ2

J0(ix),

we see that equation ( ∗∗∗) is equivalent to(
d2

dx2
+

1

x

d

dx
− 1

)
J0(ix) = 0,
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and that the latter equation holds can be checked immediately by di�erentiating the series

J0(ix) =
∞∑
k=0

(
1
2
x
)2k

(k!)2

term by term.

2. Abstract Di�usion Equation

Along with the second order problem (T∗) we consider the initial value problem of
order one  b

du

dt
+ cu = Au, t ≥ 0,

u(0) = u0.
(D∗)

The solution of this problem is

u(t) = e−
c
b
t exp

(
t

b
A

)
,

where exp (tA), t ≥ 0, is the one-parameter semigroup of operators in the space E0

generated by A. This semigroup may be simply expressed in terms of the cosine family
from the previous section, namely,

exp(tA) =
1

2
√
πt

∞∫
−∞

e−
τ2

4t ξ(τ) dτ, t > 0; (2)

see J. Kisy�nski [5, p. 9].

3. Reducing the Problem of Estimating the Di�erence Between
Solutions of Problems (T∗) and (D∗) to a Comparison Theorem

From exp(tBa,b,c)D(Ba,b,c) = D(Ba,b,c) and

d

dt
exp(tBa,b,c)

(
u0

u1

)
= Ba,b,c exp(tBa,b,c)

(
u0

u1

)
= exp(tBa,b,c)Ba,b,c

(
u0

u1

)

with the latter equality holding for u0 ∈ D(A) and u1 ∈ E1, and taking the form

d

dt

(
S00(t) S01(t)
S10(t) S11(t)

)(
u0

u1

)
=

(
0 1

a−1(A− c) −a−1b

)(
S00(t) S01(t)
S10(t) S11(t)

)(
u0

u1

)
=

=

(
S00(t) S01(t)
S10(t) S11(t)

)(
0 1

a−1(A− c) −a−1b

)(
u0

u1

)
,

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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we deduce the inclusions S00D(A) ⊂ D(A), S01E1 ⊂ D(A), S10D(A) ⊂ E1 and S11E1 ⊂
E1, and equalities

dS00u0

dt
= S10u0 = S01a

−1(A− c)u0, (3)

dS01u1

dt
= S11u1 = S00u1 −

b

a
S01u1, (4)

dS10u0

dt
= a−1(A− c)S00u0 −

b

a
S10u0 = S11a

−1(A− c)u0, (5)

dS11u1

dt
= a−1(A− c)S01u1 −

b

a
S11u1 = S10u1 −

b

a
S11u1. (6)

If u0 ∈ D(A), then it follows from (3) and (6) applied with u1 = u0 that

S01a
−1(A− c)u0 = a−1(A− c)S01u0 = S10u0. (7)

On the other hand, by (4), (5) and (7) it is clear that if S00 is extended by continuity to
an operator in L(E0, E0), which is possible by (4), then, for u0 ∈ D(A), we have

S00Au0 = AS00u0. (8)

By (3) and (5), we see that for u0 ∈ D(A) the function u(t) = S00(t)u0 satis�es the
equation

du(t)

dt
= b−1(A− c)u(t)− S11(t)b

−1(A− c)u0.

Since u(0) = u0, it follows that

S00(t)u0 = exp

(
t

b
(A− c)

)
u0 −

t∫
0

exp

(
t− τ

b
(A− c)

)
S11(τ)b

−1(A− c)u0 dτ. (9)

To simplify notation, let

U(t, a, b, c, A) =

t∫
0

exp

(
t− τ

b
(A− c)

)
S11(τ, a, b, c, A) dτ.

In view of (9), the di�erence between the solution

ua(t) = S00(t, a, b, c, A)u0 + S01(t, a, b, c, A)u1

to problem (T∗) and the solution

u(t) = exp

(
t

b
(A− c)

)
u0

to problem (D∗) satis�es the estimate

∥ua(t)− u(t)∥E0
≤
∥∥U(t, a, b, c, A)b−1(A− c)u0

∥∥
E0

+ ∥S01(t, a, b, c, A)u1∥E0
(10)
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for u0 ∈ D(A), u1 ∈ E1 and t ≥ 0. We will also obtain a similar estimate for the di�erence
du0(t)
dt

− du(t)
dt

. Since S11(0)u1 = u1, (6) implies that

S11(t)u1 = e−
b
a
tu1 +

t∫
0

e−
b
a
(t−τ)S10(τ)u1 dτ.

If u1 ∈ D(A), then by (3) we may write

S11(t)u1 = e−
b
a
tu1 +

b

a

t∫
0

e−
b
a
(t−τ)S01(τ)b

−1(A− c)u1 dτ. (11)

If u0 ∈ D(A2) and u1 ∈ D(A), then, by (3) and (4),

dua(t)

dt
− du(t)

dt
− e−

b
a
t(u1 − b−1(A− c)u0)

equals

S10(t)u0 + S11(t)b
−1(A− c)u0 − exp

(
t

b
(A− c)

)
b−1(A− c)u0 +

+
(
S11(t)− e−

b
a
t
) (

u1 − b−1(A− c)u0

)
which in turn, given that, by (5) and (8),

S10(t)u0 + S11(t)b
−1(A− c)u0 = b−1(A− c)S00(t)u0 = S00(t)b

−1(A− c)Bu0,

is equal to

S00(t)b
−1(A− c)u0− exp

(
t

b
(A− c)

)
b−1(A− c)u0+

(
S11(t)− e−

b
a
t
) (

u1 − b−1(A− c)u0

)
,

and this, in view of (9) and (11), �nally equals

−U(t, a, b, c, A) [b−1(A− c)]
2
u0+

+
b

a

t∫
0

e−
b
a
(t−τ)S01(τ, a, b, c, A)b

−1(A− c)
[
u1 − b−1(A− c)u0

]
dτ.

Hence, under the assumption that u0 ∈ D(A2) and u1 ∈ D(A), we obtain the following
estimate: ∥∥∥ dua(t)

dt
− du(t)

dt
− e−

b
a
t(u1 − b−1(A− c)u0)

∥∥∥
E0

≤

≤
∥∥∥U(t, a, b, c, A)

[
b−1(A− c)

]2
u0

∥∥∥
E0

+

+ sup
0≤τ≤t

∥∥S01(τ, a, b, c, A)b
−1(A− c)

[
u1 − b−1(A− c)u0

]∥∥
E0

.

(12)

In view of inequalities (10) and (12), the problem of estimating the di�erence ua(t) −
u(t) reduces to estimating the norms of operator-valued functions U(t, a, b, c, A) and
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S11(t, a, b, c, A). The case of U will not be treated directly, but will be tackled by means
of the auxiliary function V de�ned by

V (t, a, b, c, A) = U(t, a, b, c, A) +
b−

√
∆

2a

t∫
0

U(τ, a, b, c, A) dτ. (13)

Viewing (13) as a Volterra-type equation with U as an unknown function, we easily deduce
that

U(t, a, b, c, A) = V (t, a, b, c, A) +

√
∆− b

2a

t∫
0

e
√

∆−b
2a

(t−τ)V (τ, a, b, c, A) dτ. (14)

Since
√
∆−b
2a

< 0, (14) implies immediately that

∥U(t, a, b, c, A)∥ ≤ 2 sup
0≤τ≤t

∥V (t, a, b, c, A)∥.

However, this inequality will not be used in the context of the telegraph equation (∗) which
is of main interest to us, as in this case other, more subtle estimates are available and will
be exploited that result from special properties of V .

The following theorem is the key to estimating the norms of operator-valued functions
V (t, a, b, c, A) and S01(t, a, b, c, A).

Comparison Theorem. Let a > 0, b > 0 and c ≥ 0 be such that ∆ = b2 − 4ac > 0, and
let k ≥ 0. Let Sij(t, a, b, c, k

2) be the real functions de�ned via the equality

(
S00(t, a, b, c, k

2) S01(t, a, b, c, k
2)

S10(t, a, b, c, k
2) S11(t, a, b, c, k

2)

)
= exp

t

 0 1
k2 − c

a
− b

a


and let (compare (13))

V (t, a, b, c, k2) := e
k2−c

b
t ∗ S11(t, a, b, c, k

2) +
b−

√
∆

2a
∗ e

k2−c
b

t ∗ S11(t, a, b, c, k
2),

where ∗ denotes convolution on the half-line t ≥ 0. If

∥ξ(t)∥L(E0,E0) ≤ M cosh(kt), −∞ < t < ∞, (15)

with M = const ≥ 1, then∥∥∥∥exp( t

b
(A− c)

)∥∥∥∥
L(E0,E0)

≤ M exp

(
t

b
(k2 − c)

)
, t ≥ 0, (16)

∥S00(t, a, b, c, A)∥L(E0,E0)
≤ M S00(t, a, b, c, k

2), t ≥ 0, (17)

∥S01(t, a, b, c, A)∥L(E0,E0)
≤ M S01(t, a, b, c, k

2), t ≥ 0, (18)

and

∥V (t, a, b, c, A)∥L(E0,E0)
≤ M V (t, a, b, c, k2), t ≥ 0. (19)
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4. Proof of the Comparison Theorem

By (2), we have

∥ exp(tA)∥ ≤ 1

2
√
πt

∞∫
−∞

e−
τ2

4t ∥ξ(τ)∥ dτ ≤ M
1

2
√
πt

∞∫
−∞

e−
τ2

4t cosh(kt) dτ = M exp(tk2),

and so ∥∥∥∥exp( t

b
(A− c)

)∥∥∥∥ ≤ e−
c
b
t∥ exp(tA)∥ ≤ Me−

c
b
te

t
b
k2 = Me

k2−c
b

t.

Similarly, by (1),

∥S01(t, a, b, c, A)∥ ≤
t∫

0

K(t, τ)

∥∥∥∥ξ( τ√
a

)∥∥∥∥ dτ ≤

≤ M

t∫
0

K(t, τ) cosh

(
kτ√
a

)
dτ = MS01(t, a, b, c, k

2),

because the kernel K(t, τ) = e−
b
2a

tJ0

(
i
√
∆

2a

√
τ 2 − t2

)
is non-negative for 0 ≤ τ ≤ t.

Inequalities (16) and (18) are thus proved. Inequality (17) is established in a similar
manner. The proof of (19) is more complicated. According to a well-known result from the
theory of semigroups of operators, there is a constant λ0 such that for λ > λ0 we have

b (bλ+ c− A)−1 =
(
λ− b−1(A− c)

)−1
=

∞∫
0

e−λt exp

(
t

b
(A− c)

)
dt (20)

and

(λ−Ba,b,c)
−1 =

∞∫
0

e−λt exp (tBa,b,c) dt. (21)

Since (15) implies that

λ(λ2 − A)−1 =

∞∫
0

e−λtξ(t) dt for λ > k, (22)

it follows that for λ so large that aλ2 + bλ+ c > k2 we have

(λ−Ba,b,c)
−1 =

(
λ−

(
0 1

a−1(A− c) −a−1b

))−1

=

=

(
(aλ+ b)(aλ2 + bλ+ c− A)−1 a(aλ2 + bλ+ c− A)−1

(A− c)(aλ2 + bλ+ c− A)−1 aλ(aλ2 + bλ+ c− A)−1

)
.

This together with (21) implies the existence of a constant λ1 such that

∞∫
0

e−λtS11(t, a, b, c, A) = aλ(aλ2 + bλ+ c− A)−1 for λ > λ1. (23)
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Since the Laplace transform of the convolution of two functions (on the half-line 0 ≤ t <
∞) is the product of the transforms of these functions, equality (13) written as

V (t, a, b, c, A) = exp

(
t

b
(A− c)

)
∗ S11(t, a, b, c, A) +

+
b−

√
∆

2a
∗ exp

(
t

b
(A− c)

)
∗ S11(t, a, b, c, A)

and combined with (20) and (23) implies that

∞∫
0

e−λtV (t, a, b, c, A) dt = a

(
λ+

b−
√
∆

2a

)(
λ− b−1(A− c)

)−1
(aλ2 + bλ+ c− A)−1

for λ > λ2 = max(λ0, λ1). Introducing the functions

g1(λ) =
(
λ+

c

b

) 1
2
,

g2(λ) = (aλ2 + bλ+ c)
1
2 ,

h(λ) = a
λ+ b−

√
∆

2a(
λ+ c

b

) 1
2
(
aλ2 + bλ+ c

) 1
2

,

we may rewrite the last identity as

∞∫
0

e−λtV (t, a, b, c, A) dt = h(λ)g1(λ)
(
[g1(λ)]

2 − A
)−1

g2(λ)
(
[g2(λ)]

2 − A
)−1

for λ > λ2. But now, by (22), we see that

∞∫
0

e−λtV (t, a, b, c, A) dt = h(λ)

∞∫
0

e−g1(λ)tξ(t) dt

∞∫
0

e−g2(λ)sξ(s) ds =

= h(λ)

∞∫
0

∞∫
0

e−g1(λ)t−g2(λ)s
1

2
[ξ(t+ s) + ξ(t− s)] dt ds

(24)

for λ > λ2. Analogously,

∞∫
0

e−λtV (t, a, b, c, k2) dt = h(λ)

∞∫
0

∞∫
0

e−g1(λ)t−g2(λ)s
1

2
[cosh(t+ s) + cosh(t− s)] dt ds. (25)

Thus, for each u ∈ E0 such that ∥u∥ = 1 and each bounded linear functional f on E0 such
that ∥f∥ = 1, we have

∞∫
0

e−λt
[
M V (t, a, b, c, k2)− ⟨f, V (t, a, b, c, A)u⟩

]
dt =

= h(λ)

∞∫
0

∞∫
0

e−g1(λ)t−g2(λ)sΨ(t, s) dt ds

(26)
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for λ > λ2, while, by (15), the function

Ψ(t, s) =
1

2
M [cosh(t+ s) + cosh(t− s)]− 1

2
⟨f, [ξ(t+ s) + ξ(t− s)]u⟩

is non-negative. Let

F (λ) = h(λ)

∞∫
0

∞∫
0

e−g1(λ)t−g2(λ)sΨ(t, s) dt ds

and let us assume for now that

the function F (−λ) is completely monotone in the interval −∞ < λ < −λ2,

i.e., that dnF (−λ)
dλn > 0 for all n = 0, 1, . . . and λ ∈ (−∞,−λ2).

(27)

It follows (26) and (27), by virtue of the Post�Widder formula for inversion of the
Laplace transform, that

M V (t, a, b, c, k2)− ⟨f, V (t, a, b, c, A)u⟩ = lim
n→∞

(−1)n

(n− 1)!

(n
t

)n dn−1F (λ)

dλn−1

∣∣∣∣
λ=n

t

≥ 0

for each t > 0. Since the only restriction imposed on u and f was ∥u∥ = ∥f∥ = 1, this
results in inequality (19).

The idea of exploiting the Post�Widder formula to obtain estimates as above is taken
from the paper by M. Sova [9], who was the �rst to study the asymptotic behaviour,
as a → 0, of solutions of initial-value problem of type (T∗) in a non-Hilbert space. The
idea to use completely monotone functions is due to the author of the present paper; this
approach simpli�es the analysis and sharpens the estimates.

We now present the proof of (27). It su�ces to show that

dn[−g1(−λ)]

dλn
> 0 for n = 0, 1, . . . and λ ∈ (−∞,−λ2), (a)

dn[−g2(−λ)]

dλn
> 0 for n = 0, 1, . . . and λ ∈ (−∞,−λ2), (b)

and

dnh(−λ)

dλn
> 0 for n = 0, 1, . . . and λ ∈ (−∞,−λ2). (c)

That (a) is true follows immediately from the formula

dn[−g1(−λ)]

dλn
= − dn

dλn

(c
b
− λ
) 1

2
=

1

2

1

2

3

2
. . .

2n− 3

2

(c
b
− λ
)− 2n−1

2
.

For the proof of (b) we calculate, for λ < 0,

d

dλ
[−g2(−λ)] = − d

dλ
(aλ2 − bλ+ c)

1
2 =

(
b

2
− aλ

)(
aλ2 − bλ+ c

)− 1
2 > 0
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and

d2

dλ2
[−g2(−λ)] = −a(aλ2 − bλ+ c)−

1
2 +

(
b

2
− aλ

)2 (
aλ2 − bλ+ c

)− 3
2 =

=
∆

4

(
aλ2 − bλ+ c

)− 3
2 =

∆

4
a−

3
2 (µ1 − λ)−

3
2 (µ2 − λ)−

3
2 > 0,

where µ1 =
b−

√
∆

2a
> 0 and µ2 =

b+
√
∆

2a
> 0. Since

dk

dλk
(µj − λ)−

3
2 =

3

2
· 5
2
· · · 2k + 1

2
(µj − λ)−

2k+3
2

for k = 0, 1, . . . , j = 1, 2 and λ < 0, Leibniz's formula implies that

d2+n[−g2(−λ)]

dλ2+n
=

∆

4
a−

3
2

n∑
k=0

(
n

k

)
dk(µ1 − λ)−

3
2

dλk

dn−k(µ2 − λ)−
3
2

dλn−k
> 0

for λ < 0 and n = 1, 2, . . . .
We are left with showing (c). To this end, we observe that

h(−λ) = a
µ1 − λ(

c
a
− λ
) 1

2 a
1
2 (µ1 − λ)

1
2 (µ2 − λ)

1
2

= a
1
2

(
µ1 − λ
c
b
− λ

) 1
2

(µ2 − λ)−
1
2 .

Since
dk

dλk
(µ2 − λ)−

1
2 =

1

2
· 3
2
· · · 2k − 1

2
(µ2 − λ)−

2k+1
2

for λ < 0 and k = 1, 2, . . . , Leibniz's formula shows that our task reduces to proving that

dk

dλk

(
µ1 − λ
c
b
− λ

) 1
2

> 0 for λ < 0 and k = 0, 1, . . . . (c∗)

Inequality (c∗) results from

D := λ1 −
c

b
=

b−
√
∆

2a
− c

b
≥ 0 (28)

since b2 − 2ac ≥ b
√
∆; the latter condition may easily be checked by taking squares of

both sides. By (28), we have

d

dλ

(
µ1 − λ
c
b
− λ

) 1
2

=
d

dλ

( c
b
+D − λ
c
b
− λ

) 1
2

=
1

2

( c
b
− λ

c
b
+D − λ

) 1
2 D(

c
b
− λ
)2 =

=
D

2

(c
b
+D − λ

)− 1
2
(c
b
− λ
)− 3

2
,

and thus we see that inequality (c∗) is true for k = 0, 1. To prove it for k = 2, 3, . . . ,
one needs to apply Leibniz's formula in a way similar to that used in our proof of (b).
Hence, inequality (c) is seen to be true. The proof of the comparison theorem is thereby
completed.
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5. Consequences of the Comparison Theorem in the Case k = 0

We have

V (t, a, b, c, 0) = e−
c
b
t ∗

S11(t, a, b, c, 0) +
b−

√
∆

2a

t∫
0

S11(τ, a, b, c, 0) dτ

 =

= e−
c
b
t ∗

(
S11(t, a, b, c, 0) +

b−
√
∆

2a
S01(t, a, b, c, 0)

)
= e−

c
b
t ∗ u(t),

where

u(t) = S11(t, a, b, c, 0) +
b−

√
∆

2a
S01(t, a, b, c, 0)

is the solution of the equation
au′′ + bu′ + cu = 0

with initial conditions

u(0) = 1,

u′(0) = S ′
11(0) +

b−
√
∆

2a
= − b

a
+

b−
√
∆

2a
= −b+

√
∆

2a
.

Therefore we have
u(t) = e−

b+
√

∆
2a

t

and so

V (t, a, b, c, 0) = e−
c
b
t

t∫
0

e

(
c
b
− b+

√
∆

2a

)
τ
dτ = e−

c
b
t

t∫
0

e
−
(
D+

√
∆
a

)
τ
dτ ≤

≤ e−
c
b
t 1

D +
√
∆
a

≤ a√
∆
e−

c
b
t.

Also
t∫

0

e
√

∆−b
2a

(t−τ)V (τ, a, b, c, 0) dτ =

t∫
0

e
√
∆−b
2a

τV (t− τ, a, b, c, 0) dτ ≤

≤ a√
∆

t∫
0

e
√

∆−b
2a

τe−
c
b
(t−τ) dτ =

a√
∆
e−

c
b
t

t∫
0

e−Dτ dτ.

Assume that inequality (15) holds with k = 0. Then, in view of the above, inequality (19)
and equality (14), we obtain the estimate

∥U(t, a, b, c, A)∥L(E0,E0) ≤ e−
c
b
tM

a√
∆

1+ b−
√
∆

2a

t∫
0

e−Dτ dτ

 ≤

≤ e−
c
b
tM

a√
∆

(
1+

c√
∆
t

)
,

(29)

for we have b−
√
∆

2a
≤ c√

∆
. Since u(t) = S01(t, a, b, c, 0) is the solution of the equation

au′′ + bu′ + cu = 0 satisfying the conditions u(0) = 0 and u′(0) = 1, we have
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S01(t, a, b, c, 0) = (ν1 − ν2)
−1(eν1t − eν2t), where ν1 = −b+

√
∆

2a
and ν2 = −b−

√
∆

2a
, which

implies that S01(t, a, b, c, 0) ≤ a√
∆
for t ≥ 0. In view of inequality (18), we thus have

∥S01(t, a, b, c, A)∥L(E0,E0) ≤ M
a√
∆

for t ≥ 0. (30)

Combining together (10), (12), (29) and (30), we �nally obtain the following estimates of
the di�erence between the solution ua(t) of problem (T∗) and the solution u(t) of problem
(D∗):

(i) if u0 ∈ D(A) and u1 ∈ E1, then

∥ua(t)− u(t)∥E0 ≤
a√
∆
M

{
e−

c
b
t

(
1 +

c√
∆
t

)
∥b−1(A− c)u0∥E0 + ∥u1∥E0

}
for t ≥ 0;

(ii) and if, furthermore, u0 ∈ D(A2) and u1 ∈ D(A), then also∥∥∥∥ dua(t)

dt
− du(t)

dt
− e−

b
a
t(u1 − b−1(A− c)u0)

∥∥∥∥
E0

≤

≤ a√
∆
M

{
e−

c
b
t

(
1 +

c√
∆
t

)
∥[b−1(A− c)]2u0∥E0 + ∥b−1(A− c)[u1 − b−1(A− c)u0]∥E0

}
for t ≥ 0.
For c = 0 these inequalities are identical to those obtained in the paper [3].
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