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We consider inverse problems of evolution type for mathematical models of
quasistationary electromagnetic waves. It is assumed in the model that the wave length
is small as compared with space inhomogeneities. In this case the electric and magnetic
potential satisfy elliptic equations of second order in the space variables comprising integral
summands of convolution type in time. After differentiation with respect to time the
equation is reduced to a composite type equation with an integral summand. The boundary
conditions are supplemented with the overdetermination conditions which are a collection
of functionals of a solution (integrals of a solution with weight, the values of a solution at
separate points, etc.). The unknowns are a solution to the equation and unknown coefficients
in the integral operator. Global (in time) existence and uniqueness theorems of this problem
and stability estimates are established.
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Introduction

We consider the problems arising in the description of propagation of both
electromagnetic waves in anisotropic media [1| and nonstationary interior waves in
an incompressible stratified rotating fluid [2]. The peculiarities of propagation of
electromagnetic waves in anisotropic media are defined by the corresponding material
equations. If the length of a wave is small as compared with space inhomogeneities
that these equations can be written in the form accounting for time dispersion only

and introducing the potentials of electric and magnetic fields F = —Vo(z,t) and
H = —V(z,t) and making some transformations we arrive at the equations (see [1],
p. 28)

3 3

Z(l + ATR*) Py, 2, = —4Tp + Fy, Z(l + AR *) g, o, = F, (1)

i=1 i=1

where x; are the diagonal entries of the tensors of electric and magnetic susceptibilities and
Rixp(x,t) = fot ki(t—7)p(x, 7) dr. Note that some model problems for nonstationary waves
in media with anisotropic dispersion are reduced to integro-differential equations (1) with
kernels of convolution operators of the form of a sine, a polynomial, or an exponential
function. In these cases it is possible to reduce an initial vector systems of equations
by introducing generalized potentials of quasistationary electric and magnetic fields to
composite type equations (see [2]) of the form

3
Py(0r)A®(x,t) + Prij () Z Qpa; = L,

1,j=1
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where P, P,;; are polynomials of degrees s and m, respectively. At the present article
we examine inverse problems on recovering the coefficients k; for general equations of the
form

Lou + Z rixLiu = f, (2)
i=1

where

Liyu = Z a;;(z tux,,x]%—z (2,t) + af(z,t)u, (v,t) € Q=G x(0,T), G CR"

3,j=1

The equation (2) is supplemented with the overdetermination conditions

U5 (u)(t) = (1), (3)

where U, are some functionals (the conditions on them are described below), and the
boundary conditions
Bulg = g(z,t), S =0G x (0,T), (4)

where Bu = w or Bu = Y. vi(z,t)uy, + o(x,t)u. Similar equations and systems of
equations arise in elasticity (materials with memory) [3-5], physics (phase-field models,
heat and mass transfer) [6,7], and in many other fields. The most known case is the case
of a parabolic (see [3,6-12]) or hyperbolic (see [4,5]) operator Ly. Even the most general
case was studied in which Lo = d; — A or Ly = 0? — A, with A a generator of an analytic
semigroup (see, for instance, [9-12|). The case of a pseudoparabolic operator Ly is treated
in [13]. In the case of Ly = 0, we arrive at Gurtin-Pipkin-type models (see [14,15]).
Probably, the elliptic case was not considered except for one model situation (see [16]),
where n = 1. We establish global (in time) solvability of the problem (2) — (4) in Sobolev
spaces.

1. Preliminaries

We employ the Sobolev spaces W:(G) and Hélder spaces C*(G). The symbol
L,(0,T;H) (H is a Banach space) stands for the spaces of strongly measurable functions
defined on [0, 7] with values in H (see the definition of the function spaces, for instance,
in [17]).

We assume below that T' = dG € C? (see the definition, for example [18, Sect. 1,
Ch. 1]) and that the coefficients of the operators Ly (k= 0,1,...,m) are real-valued and
the operator Ly is elliptic, i. e., there exists a constant d; > 0 such that

D algg > hlefF VEER, Y (at) €Q.

ij=1
We fix the parameter p > n (for simplicity) and suppose that
al; € C(Q), af,ay € C([0,T]; Ly(G)), alj € Lao(Q), afyy,alyy € Ly(0,T; Lo(G)),
af,af € Loo(0,T; L,(Q)), ab,,ak € L(Q) (i,7=1,2,..,n, k=1,2,...,m), (5)
Yi> Vit O, Ot € Cl(g) (Z = ]-7 s 7n)7 |Z?:1 72n1| Z 61 >0 v(‘rat) € Sa
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where 7 = (n1,ng,...,n,) is the outward unit normal to S and J; is a constant. The
operator Ly is assumed invertible, i. e., the following theorem is valid.

Theorem 1. Let the condition (5) hold. The problem with a parameter

Lo(t)u= f(z), B()ulr = g(), (6)
for every f € L,(G) (p >n) and g € W°(T') (so = 2 — 1/p in the case of the Dirichlet
conditions and so = 1 — 1/p the case of the oblique derivative problem) has a unique

solution u € W2 (G) satisfying the estimate

lullwzie) < cllfllze) + 119lwgow),
where the constant c is independent of f,g,t € [0,T].

The claim of the theorem holds whenever ker Lo = 0. In particular, it suffices to require
in the case of the Dirichlet boundary conditions that a) < 0 a.e. in @ (see the maximum
principle [19, Ch. 8]) and in the case of the oblique derivative problem that a$ < 0 a.e.
in @ and aj < 0 a.e. in some neighborhood about S (see Proposition 2.3.2 and Theorem
2.3.5 in [20]).

Corollary 1. As a direct corollary of the claim of the theorem, we have that if f(z,t) €
C(lo, B]; Ly(G)) and g(x,t) € Cla, B]; W°(I)) (0 < a < B <T) then the problem

Lo(t)u = f(z,t), Bulr = g(z,t), (7)

has a unique solution u € C([a, B; W}(Q)) satisfying the estimate

lullcaswzay < clllfllcqasizy@) + 19llcqagmwzo )

where the constant c is independent of f, g, a, 8. It is not also difficult to demonstrate that
if there exist the generalized derivatives fi € Ly(a, B; Ly(G)), g: € Ly(a, B; W;°(I')) then a
solution to the problem (7) is differentiable with respect to t, u, € Ly(c, f; WPQ(G)) and

Lo(t)uy = fi(z,t) — Lopu,  Bug|r = gi(z,t) — Byulr, (8)

for almost all t € (a, B) (the coefficients of the operators Loy, By are the derivatives with
respect to t of the coefficients of Lo, B). Moreover, the following estimate is valid:

el L@z + lulleammwzie) <
< c(lfllcqapizy@) + l9llcqagmzoay + 1 fellzy sy + 19l @swso @)
where the constant c is independent of o, B, f, g.

Note that the conditions (5) imply that the coefficients a¥;, a¥, af belong to the space

179 V8
C([0,T7; L,(G)) after a possible modification on a set of zero measure. In what follows we

assume this condition to be fulfilled.

Lemma 1. The following inequalities hold:

lu s vllz,00) < ullzyom 1ola0m), lu* vllL,0m < AP llullz,omlolz,0m,  (9)
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()20 <7 Plunlzy00), w(0) =0, (10)
@l Lp0) < AMuillLy0m, u(0) =0 (11)

The inequalities (9) are known (see, for instance, Lemma 3.1 in [6]). The inequalities
(10), (11) are an obvious consequence of the Newton—Leibnitz formula.

Assume that a solution to the problem (2) — (4) possesses the property wu, €
Ly(0,T;W2(G)) and u € C([0, T]; WZ(G)), the conditions (5) hold, g € C([0, T]; W;i°(T')),
and g; € Ly(0,T;W3o(T)), ki(t) € L,(0,T) for all 4, and f, fy € L,(Q). Taking t = 0
in (2), we infer Lo(z,0)u(z,0) = f(z,0). Applying Theorem 1, we can find the function
u(z,0) = up(x) as a solution to the problem (6) at ¢ = 0. The boundary condition (3)
yields

Bug(z)|r = g(z,0). (12)
The condition (4) implies the necessary solvability condition
U, (up(z)) =,;(0) 7=1,2,...,m. (13)

Next, differentiating (2) with respect to t, we infer

(Lou); + i Zk( V(Liug(z,t — 7) + Lyu(t — 7)) dr = fi — Zk‘ (x,0)ug(x). (14)

Construct an auxiliary function ®(z,t) € C([0,7];W7(G)) such that @, €
Ly(0,T;W2(G)), B®|s = g(z,t), and ®(z,0) = ug(z). Let ® be a solution to the problem
(7). Making the change of variables u = v 4+ ®, we obtain the problem

(Lov)t + E{é ml kZ(T) (Liv)t(x,t — 7') dr =

(2

- . (15)
:—;ki(t)l)@()uo Of;k:, D)(z,t — 1) dr = fo,

Bulr =0, v(x,0) =0, (16)

Ui(0) = ¢y — Ui(@) = by, j=1,2,...,m. (17)

Theorem 2. Assume that f,fi € L,(Q), the conditions (5), (12), (13) hold, g €
C([0,T; Wze(T), g¢ € Lp(0, T;Wo(T)) (p > n), and v; € WH(0,T) (j = 1,2,...,m).
Then the problem (15) — (17) of determining the functions v, ki, ..., ky, from the class
v € L,(0,T; sz(G)), v E C([O,T];Wg(G)), k; € L,(0,T) (i =1,2,...,m) is equivalent
to the problem (2) — (4) of determining the functions u,ky,...,ky such that u, €
Ly,(0,T;W2(@G)), u e C([0,T; W2G)), and k; € Ly(0,T) (i =1,2,...,m).

Proof. Actually, the arguments presented before the theorem show that if w, ky,..., k,
is a solution to the problem (2) — (4) from the above-pointed class then the functions
v, k1,..., ky is a solution to the problem (15) — (17). So it suffices to verify the converse
statement. Let v, k&, ..., k,, is a solution to the problem (15) — (17). Put u = v 4+ ®. The
equalities f; = (Lo®); and (15) imply that

t m
O(Low) + 0 [ > ki(T)Liu(z, t — 1) dr = fi, (18)
0 i=1
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Integrating this equality from 0 to ¢, we derive that
t m
Lou+ [ > ki(7)Liu(x, t — 1) dr = f(t) + Lou(x,0) — f(z,0).
0 i=1

Since 0 = v(z,0) = u(z,0) — ®(x,0) = u(x,0) — up(x), u(z,0) = up(z), the definition of
the function wy, yields Lu(x,0) — f(x,0) = 0, i. e., the equality (2) holds. The validity of
the condition (4) is obvious.

O

Let 0 < a < < T'. Define the space H(«, ) as the space of functions v(x,t) such

that v, € Ly(a, B;W2(G)), v € C(la, B; WH(G)), Bv|r = 0. Endow it with the norm

] £ (a,8) = |’U||C([a75};wg(g)) + ||thLp(a75;ng(G)). In what follows, a norm of a vector is the
sum of the norms of its coordinates.

Lemma 2. Let the conditions (5) hold. Then
I(Zs0)elly @ sz < cllvlliee Yo € Cllen B WS(G)) : v € Ly(a, B;W(G)),  (19)

L5012y 0 :Lo () S CllvllcpmzianTe € Cla, Bl WHG)) v € Ly(a, B; Wi(G)),  (20)
where 0 < a < f < T and the constant c is independent of o, 3, 5.

Proof. The proof is more or less obvious. As an example we establish (20). The expression
Ljv contains the summands a,v,.,,, @l,v,,, and a),v. We have

. . 1/p
10k Vzn | Lo i) < (/Hagkt”ioo(G d) 102,25 | Lo (085206 SCZ (. B)[vll e (21)

Similarly, we infer
@ty | yasito(@)) < Nalllzpesiio@)Va i @siie @) < Al B)VllH@s),  (22)

labevllzy oz, < co(e B)1v]lm.s)- (23)
Here we employ the embedding W, (G) C Loo(G) (see [17]). We can take the sum of the
constants ¢,.(0,7), ¢/(0,T), ¢(0,T) over all indices as the constant in (20).

O
Lemma 3. Let the conditions (5) hold. Then the following inequalities hold:

t
||/0 ki (T)(Ljw)i(z,t = 7) d7l| L, 005z,0) < a7 Pl g0 [wll00 YT, (24)

H/ (@t = 7) d7 ||y iizp@n <y PR i lwllroq, T+ <T, (25)

H/ Y Ljw)(@, t—7) d7 ||, ivinocn < v PNl o Wi, 1Y < T, (26)

valid for every every w € C([o, B; W2(G)) such that wy € Ly(c, ; W}(G)). The constant
c1 s independent of v, 1, 7.
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Proof. To prove (24), we first use the Minkowski inequality inserting the norm in L,(G)
under the integral sign. Next, we apply Lemmas 2 and 3. To establish (25), we use the
change of variables. We have

H/ (z,t=7)d7| L, (14 Lp(G) = ||/ kj(mi+0) (Ljw)e (2, 7 —71) dTi[ 1,y (0.4:L0()) -
0

Thus, we obtain the integral of the form (24) which is estimated similarly. The estimate
of the last integral after the change of variables is reduced to estimating the espression

|| / k’j (T)(Lj’LU)t(.CE, r+1— T) dTHLp(O,’y;Lp(G))a
0
which is again of the same form as the left-hand side of (24).

Consider the auxiliary equation

t m
L()Ut =+ LOtU + f Z kz )t(l’7t — T) dT = fQ. (27)
0 =1

Let Q" = G x (0,7). Fix Ty < T.

Theorem 3. Assume that fo € L,(Q™) (p > n), the conditions (5) hold, and k; €
L,(0,Ty) (i =1,2,...,m). Then there exsists a unique solution to the problem (16), (27),
such that v € H(0,Ty). There ezists a constant ¢ > 0 independent of f and Ty such that a
solution to the problem (16), (27) satisfies the estimate

[vllcqomwz@y + vl ,0.mwzc) < cllfollr,qmo)-
Proof. We reduce the problem to an integral equation. From (27) we have

£
!

v(z,t) + L'

o,

k() (Liw)e(os€ = 7y drde = L5’ [ folw ) dr = i (28)

=1

where the operator L' f takes a function f onto a solution to the problem (7) with g = 0.
First, we justify a local solvability. We have the equation

v+ Sv) = fi (29)

Estimate [|S(v)| (0,0) (v < Tp). Corollary 1 and Lemma 3 yield

1S [0, < eV Plvllrom Bz, 00 < 20l O 15l L0 07): (30)

where the constant ¢ is independent of v and k= (k1, k2, ..., k). Hence, for v < 7o with

v0 PR Loy = 1/2, we obtain that [|S(v)|lmoq < |v]lz0)/2 and the fixed point
theorem implies the solvability of the equation (29) on [0,7]. Prove that the equation is
solvable on every of the segments [0, 7o+ 7o), with o < To, Il =1,2,. .., 7o < min(~o, To —
l70). Proceed by induction. Assume that we have already proven the solvability of (29) on
the segment [0, l7]. Rewrite the equation (29) in the form

U($,t> + SQ(U) = fl - S(U) + So(’l)) = fg, (31)
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O, t S l707

So(v) = Lal fki,o Oﬁflvo 3 k‘i(T)(LiU)&(xag —T)drd¢, t € (I, Iy + 70)
=1

(32)

It is easy to make sure that the expression —S(v)+Sp(v) contains the values of the function
v on the segment [0, ko] only and thereby this expression is an already known function.
By Corollary 1 and Lemma 3, the operator Sy(v) admits the estimate

—1/p||v

1 d
150 ()] (0,070 +70) < €70 | 2 (tv0,090+70) |E | 2, 0,70) < I (0170 470) /2 (33)

(as is easily seen, we can assume that the constant ¢ in (33) and that in (30) coincide).
Hence, the equation (31) is solvable. Obviously, a solution to the equation (31) with the
right-hand side f; is an extension of a solution to the equation (29) on the segment

[l’}/o, l’Y(] + Tg].
O

2. Main Results

Write out additional conditions on the data of the problem. We examine the problem
(2) — (4) assuming that the functionals U, meet the conditions

U; € LIWZ(G),R), W;(ug) =v;(0), j=1,2,...,m. (34)

The symbol L(A, B) for given spaces A, B stands for the space of linear continuous
operators defined on A with values in B.

Well-posedness conditions. Assume that B is the matrix with entries b;
W; (Lo ' Lj(z,0)up(w)) and there exists a constant d, > 0 such that

|det B| > 8, Vit e [0,T], (35)

where Lglf is a solution vy to the problem Lgvy = f, Bug|r = 0.

Theorem 4. Assume that f,f; € L,(Q), the conditions (5), (12), (13), (34), (35)
hold, g € C([0,T];W;o(I')), g: € Ly(0,T;W;°(I')) (p > n), and U € W, (0,7) (zﬁ =
(1,09, ..., ). Then there exists a unique solution to the problem (2) — (4) such that
w € Ly(0,T;W2(G)), u € C([0,T); W2(G)), k € L0,T), k = (k1. ks, ... k). For any
two solutions (u1, k1), (uz, k2) to the problem (2) — (4) relating to the data f;, g;,0; (i = 1,2)
satisfying the conditions of the theorem, there is the estimate

lur = walloqoriwze) + lluae — vadllL,0.mwz@) + 2iey 1k — KallL,01) < (36)
<c(lfs = fellwior,cy + lgr = g2l 0mwsomy + Y1 — Yallwiom)),

where the constant ¢ depends, in particular, on the norm of the data wn the corresponding
spaces and the constants in the condition (35).

Proof. Consider the equivalent problem (see Theorem 2)

t m m
(Lov)et [ 22 ki(T)(Ljv)e(z, t=7)+ (L @), t—=7)) dT+ 3~ kj(t) Lj(2, 0)uo(x) =0, (37)
0j=1 7j=1
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Bu|lr =0, v(x,0) =0, (38)
Ui(v) =y, j=1,2,...,m. (39)

Construct a system for determining the functions k;. Inverting the operator Ly, we arrive
at the equation

.

0i(,6) + Ly o + Lo [ 35 ky(r) (Lyo)alat = 7) + (Li@)u(,t — 7)) drt "
0 j=1 . 40
+uo(v) = —j;kj(t)Lgle(%O)uo(x%

where L' f takes a function f onto a solution to the problem (7) with ¢ = 0 and the
function vg(v) is zero in the case of the Dirichlet boundary conditions while vy(v) is a
solution to the problem Lgvy = 0, Bvg = —B;v in the case of the oblique derivative
problem (the coefficients of the operator B; are the derivatives with respect to ¢ of the
coefficients of B). The equation (37) can be written in either of the forms

t & m
Lov(z,t) = — [ [ S kj(r)(T)((Ljv)e(z, & — ) + (L;®)i(2z,& — 7)) drdé—
00 j=1 (41)
m t
= > [ k(&) d€Lj(w,0)uo () = G(v),
j=10
v(x,t) = Ly G(v). (42)
Applying the functional W¥; to (40), we obtain
t m
wzt + v, (L LOtU + \I] L ! f Z kj )t<l’,t — T) dT) + ‘Ili(UO) =
0 j=1
- . (43)
= — Y k;j(t)Vi(Ly Li(z,0)up(x) (Lot [ 57 ki (m)(Li®) (2, t — 7) dr).
j=1 0 j=1
In view of (35) this equality implies that
k=B'F— B 'Ak), (44)

where F has the coordinates F, = —y; € Wpl(O,T) (¢ = 1,2,...,m) and the operator
A(K) the coordinates

Ai(K) =0, (Lo Logw)+Vy(Ly 1/Zkj(T)((Ljv)t(:c,t—7‘)+(Lj©)t(x,t—r))d7‘)+\lli(v0(v)),

Jj=1

where v = v(k) is a solution to the problem (37), (38). Thus, we have the system for the
vector-function k = (ky, ko, .., km). Prove its solvability. Note that by Theorem 3 (used
on the segment [0,~]), for a given k € L,(0,7) (y < T), we can uniquely determine
the function v = v(k) € H(0,7) as a solution to the equation (42). Establish some
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estimates. Let R = 2||B_1ﬁ||Lp(07T). We look for a vector k& in the ball B}, = {k € L,(0,7) :
|| £, 0y < R}. Let k € B}, Estimate the quantity || Ly G/(v)]|s1(0.). We have

t

Gv) — //gzm:k‘] v)i(x, & — 1) drdE.

0 7=l

Corollary 1, Lemma 4, and the inequalities (11) imply that
1LgH(G(v) = G(0)0) = 1Lo (G () = GO)[[0) < v Pk L0 1]l 0,95 (45)

1L G(O)lm0) < v VPl 2,0 | @l r0,) + c2llEl 2,0 - (46)
Here ¢y, co are some constants independent of v and the unknowns. Thus, if
0 ek =1/2, (47)

then, for v < 79, a solution to the equation (42) satisfies the estimate

. - .
[l o < 20Kl L0 (@ momyre " + c2) = 21Kl L0, (48)

which can also rewritten as
||U||H(U7FY) S 2R03. (49)

Proceed with the estimates for the summands in (44). Corollary 1 and the trace theorems
[17, Sect. 4.7] yield

[oll 2y @swpan < el Bl @pmwpomy < callvlly o gwzre)y < sllvllzy@swpey, (50)

where the constant c; is independent of 0 < o < 8 <T'. Let ko = max; | V|| Lwz(c)r)- In
view of (10), (34), (48), (50), we infer

S 1 (wo)ll 00 < Rocs vl Lymwzey < ey P ludl L, 0mw2iey) < 1)
< 2366y VP 1y 0.)-

Using the arguments those in the derivation of (20), (10), Corollary 1, and (48), we obtain

> i 1%;(Lo ' Lorv) | £,y0) < kocr |||z, 0mwz) < 0871_1/pHUtHLp(OmWE(G)) = (52)
< 2c3057 V2| K|, 0.0,

where the constant cg is independent of v and k= (k1,ka, ..., kn). Next, using (34),
Corollary 1, and Lemma 3, we have

ST 35 1ot =)+ (L)t = 1) )00 <
0 j=1 (53)
< woct Ry (ol 0oy + 191100 < [y 0y,
where ¢y = koc1(2Res + || @[ mo,7)). The estimates (51) — (53) ensure that
||BilA(E)||Lp(0n) < ||E||Lp(0,w)7171/p010, c1o = (2¢3(ce + cg) + co). (54)
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Choose v1 < 7o such that cio7. /% = 1/2. In this case, for v < 71, the operator B~'F —
B71A(k) takes the ball B}, into itself. Demonstrate that it is also contractive for an
appropriate . Let El7 k2 e B}, (v < 7). Denote by vy, vy the corresponding solutions to
the equation (42). We have

Lovi(x, 1) f“fik (Lyvi)e(a, € — ) drdé—
00

]:

—_

(55)
m t t &€ m
Zf (&) dELj(x, 0)ug(z) — [ [ 3 KAT)(L®)e(x,§ — 7)dr = G(v;), i = 1,2.
Jj=10 0 0 j=1
Subtracting these equalities, we obtain that

t & m
Lo(Ul—UQ) :—ff Z 2) L Ul l’,g-T) + k?(T)(Lle—LjUQ)t(.T,f—T) def—

00 j=1 (56)

HMS
Ms

(kj =k () (L e, §=7) dr

1

ft —k2)(&) dELj(x, Oyuo(z
10

£
A

As before in (48) (see also (45) and (47)), we have

ogﬂ*

J

1=l o) < 47" PeresRl|kr—FRall L0 +2¢31 i =2l 0 < 1F1—F2lL,0m4cs. (57)

Thus, we obtain one more additional summand as compared with the estimate (48). Next,
consider the difference A(ky) — A(ks). We have

Ai(El) A, (k?g j i WLjv1)e(w,t — 1) — kZJQ-(T)(LjUQ)t(ZE,t —7)dr)+
U (L Lo — v)) + W(wo (01 — ) Llji% K2)(7) (L;®), (£ — ) dr).

Repeating the arguments with use of the estimates (49), (57) (valid for the functions
vy, v2), we conclude that

IBAGRY) = B A 1y0m < IF — Bl 007" Pen, enn = (cro + droci Res). (58)
Next, we can find v, < 7, such that fy;l/pcn = 1/2. In this case, for v < 79, the equation
(44) is uniquely solvable in the ball B}.

Proceed with the question of global (in time) solvability of (44). We argue as in the
proof of Theorem 3. Demonstrate that there exists 73 < 75 such that the solvability of the
system (44) on the segment [0, ly3] (I =1,2,...,) implies the solvability of this system on
(I3, ly3 + To], where 7o = min(vys, T — l73). Assume that the system is solvable on [0, 3]
(l’}/g < T) Put

= k@), telly s+t i [ 00 telys,lys+ o)
k(t)_{ 0, t<lvs - k(D) = k(t), t<lvys

The function k(t) is already known and we need to determine the function k(t). Using the
notation Sp(v) of Theorem 3, where 7, is replaced with 73, we rewrite (41) in the form

v+ Sov = Sy (k) + fs, (59)
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where the right-hand side coincide with Ly G(v) for t < Iy and, for t > I3, we have
t

Sy (k) :—Lglbfbffj A(T)Lj(v + ®)e(x, & — 7) drdE — é Y ki(8) dELy(x, 0)ug(x),

J=1 0

t & m
fs = —Lalof{ij(T)Lj(UﬂL‘I’)s(l‘;ﬁ—T) drdé—

Rl fk () deLy (. 0)uolx) + Solv).

Note that the function f3 is calculated with the use of the values of the functions v, k£ on
the segment [0, [,] and thus we can assume that it is a known function. We can see from
(59) that v can be expressed trough k linearly. The proof of the estimate (45), Lemma 4,
and the definition of the quantity v, imply that

-1
1Sov || 220,73 470) < c173 /p||k‘||Lp ) |01 H s v 70) < VI E (s tv3170) /2- (60)

Let v; = (I+Sp)~1S1(k). The estimate (60) yields ||(1+So) 0|l g(0.195270) < 201011 (095170
for all v € H(0,lvs + 7). In this case Corollary 1, Lemma 3, and (47) — (49) imply that

1-1/py 7
o1l sty < 26175 PPl Ly 95 s ) (101 1103) + 1@ 70,7+ (61)
+262||k||Lp(l’Y3,l73+To) < 4C3||kHLp(l'Y37Z’YS+TO)’

Hence, the function v = vy + (I + Sy)~! f3 is estimated by the quantity

101l 50,175 470) < AslIR[] 2, 15 135-170) + 2113 0,15 470)- (62)
Write out the representation for Aj(E) for t > ly3. We have

Ai(k) = Ay(k) + fui, Ai(k) = Wi(L5 Logvr + vo(v1))+

i(Lg lbfi ATV (v + @)z, t — 1) dT) + Uy (Lg! i f: l%j(T)(Ljvl)t(:U,t—T) dr),

j=1 0 j=1

Jii = Wi(Lg ' Loy(1 + So) ™" f3) + Wiwo((1 4 So) ™ f3))+

Lfi (ot = 7))+ WLy [ S et = )+

Jj=1 t

f Z (L;(I+ So)~ ' f3)e(w, t — 7)dr).

0 j=1
The function fy depends on the values of k on the segment (0,ly3). The remaining
expression is a linear operator of the argument k. Establish some estimates. Note that
the support of v; belongs to the segment [ly2,lv2 + 7o]. As before on the proof of the
estimates (51) and (52), we derive that

Z&(H‘I"(L_lLowl||Lp(lva tystro) F I1Wi(vo (V1)) | Ly s ivs 7o) <

1-1/p ¥ (63)
< (s + 08)73 ||Ul||H(173 ystro) <3 (6 + cs)Acs|| Kl L, (s tysmo)-
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Involving the arguments of the proof of (53), we infer
t m
Z?ll ||‘IJ f Z ) (I,t - 7—) + (qu))t<x>t - 7—)) dT)”Lp(l“f3,l73+To) < (64)
0 j=1
k

-1/p -1
< ko3 PRl s st (19000 + 121 010) < 75~ 1R £y 125,025 10 o

Moreover, we have

Ms

1 L U]_) (x7t - T) dT) HLp(l’\/g,l’yg—{-To) S (65)

1-1 1-1 7
< ko3 PN Ly 0 A3l Bl Ly tasiis by < Koc1 s P2RE|E| Ly s i o)

S |w(L f

J

Thus, the estimate
BT ARy 9595 170) < VPN 1y 1 s ) (€5 + €s)des + g + K12 Rey)
is valid. Hence, if we choose 3 so that
VM2 (g + cs)des + o + Kocr2Res) = 1/2,

then the operator B~'A(k) is contractive. Therefore, if the system (44) is solvable on
the segment [0,lvs] (I = 1,2,...,) then the system is solvable on [lIvs,lvys + 7], where
7o = min(vys, T — l3). The latter implies that the system (44) is solvable on [0,7]. Show
that the corresponding function v = v(k) (a solution to the problem (37), (38)) meets
the conditions (39). Inverting the operator Ly, we validate the equality (40). Applying the
functionals U; to (40), we obtain that

(Ui(v)e + Uil Lo " Loww) + Wi Lo " [ 32 kj(T)(Ljv)e(,t — 7) dr) + Ui(wo) =

o .

7=1

m t m

== 2 k()W Ly Lj(w, 0)uo () — Wil Lo [ 32 ky(7)(L;®)e(x,t — 7) dr).

j=1 0 j=1

S
—~
~
|
_

Subtracting this equality from (43), we arrive at the equality (V;(v)); — Ui = 0, or (in
view of (13), (17)) U, (v) = 4, i. e., the equalities (39) are fulfilled. The claim follows from
Theorem 2.

The proof of the estimate (36) is in line with the proof of the existence. We just repeat
the arguments paying attention to constants in the corresponding estimates.
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OBPATHBIE 3A AU 1JISI MATEMATUYECKUX MOJIEJIEN
KBA3VCTALIMOHAPHBIX DJIEKTPOMAI'HUTHBIX BOJIH

B AHU30TPOIIHBIX HEMETAJIJINYECKUX CPEIAX

C JUCIIEPCUEN

C.I. IIamxoe'?, C.H. Illepaun'

YHOropeknit TOCYIapCTBEHHBI YHUBEPCHUTET, T. XaHTHI-MaHCUICK,
Poccuiickag ®enepalius

2H)>KHo—ypaﬂbcKI/II7I rOCYy/IapCTBEHHbBIH YHUBEPCUTET, T. e/ IsI0UHCK,
Poccuiickas @enepariust

B pabore paccmarpusaroTcs obpaTHbIE 33291 IBOTIOIMOHHOTO THIIA I MaTeMaTHIe-
CKUX MOJIeJIell KBA3UCTAIMOHAPHBIX JJIEKTPOMATHUTHBIX BOJIH. B MOJENN TIpeIonaraercs,
9TO JIJINHA BOJIHBL MAaJjia 110 CPABHEHUIO C IIPOCTPAHCTBEHHBIMYU HEOIHOPOIHOCTsAMY. BBOIAsS
JIEKTPUYECKUN U MATHUTHBINA TOTEHITHAJ TIOJIYIAEM JITUIITHIECKOe YPABHEHNE BTOPOTO M0~
PSKa 10 TPOCTPAHCTBEHHBIM MTEPEMEHHBIM, COIEPIKAIee WHTErPAJIbHBIE CIaraeMble THIIA,
cBepTku 10 Bpemenu. Ilocie auddepeHInpoBanns MO BpEMEHH 33aYa CBOIUTCA K YPaB-
HEHHUIO COCTABHOI'O THITA C WHTEIPAJIbHBIM cjaraeMbiM. ONpeneneHnio BMecTe ¢ PereHneM
[O/1JIe2KAT HEU3BeCTHbIE KOIPOUIMEHTHI B MHTErPAJIBHOM omneparope. JlonosHurepHo K
KPAeBbIM YCJIOBHUSIM 33/AI0TCS YCIOBUSA TIEPEOIpeiesieHns B BUIE 33IaHHOTO Habopa (byHK-
[MOHAJIOB OT PEIleHNsl, KOTOPbIE MOT'YT UMETh [IPOM3BOJIBHbIH BUJ (MHTErPAJIbI OT PEIIEHUST
C BECOM, 3HAUEHMsI PEIIEHNs B OTAEJIbHBIX TOYKAX U IP. ). B KAYECTBE OCHOBHBIX IIPOCTPAHCTB
paccmarpusaiorca npoctpanctsa C.JI. CobosneBa. JIoKa3bIBAIOTCA TEOPEMBI O CYIIECTBOBA-
HUW W €IUHCTBEHHOCTH PEIIEHUs MOCTABJIEHHON 33/1a4YU B 1IE€JIOM 1[I0 BPEMEHU, IPUBOIUTCS
OIIEHKA yCTONYNBOCTH.

Karouesvie crosa: ypasHenus cobosesckozo muna; dALUNMUYECKOE YPAEHEHUE; YPa8He-

HUA € NAMAMDBIO; 06pammas 3adava; Kpaeeas 3adana.
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