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Of concern is the semilinear mathematical model of ion-acoustic waves in plasma. It
is studied via the solvability of the Cauchy problem for an abstract complete semilinear
Sobolev type equation of higher order. The theory of relatively polynomially bounded
operator pencils, the theory of differentiable Banach manifolds, and the phase space method
are used. Projectors splitting spaces into direct sums and an equation into a system of two
equivalent equations are constructed. One of the equations determines the phase space of
the initial equation, and its solution is a function with values from the eigenspace of the
operator at the highest time derivative. The solution of the second equation is the function
with values from the image of the projector. Thus, the sufficient conditions were obtained
for the solvability of the problem under study. As an application, we consider the fourth-
order equation with a singular operator at the highest time derivative, which is in the base
of mathematical model of ion-acoustic waves in plasma. Reducing the model problem to an
abstract one, we obtain sufficient conditions for the existence of a unique solution.
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Introduction

Let Q = (0,a) x (0,b) x (0,¢) C R®. In a cylinder © x R consider equation which arose
in a theory of ion-acoustic waves in plasma [1|

0%*u

(A — )\)utttt -+ (A — )\')utt -+ CK—Q = A(uS) (1)
Oxs

with the Cauchy-Dirichlet conditions

)

u(z,0) = up(x), uz,0)=u(x),
u(x,0) = ug(x), w(x,0) =ug(z), x€Q, (2)
u(z,t) =0, (z,t) € 002 x R.

In suitable Banach spaces 4 and § mathematical model (1), (2) can be reduced to the

Cauchy problem
u®(0) =up, k=0,1,....,n—1, (3)

for a semilinear Sobolev type equation of higher order

Au™ = B, 1u™™ + B, 5u"? + ...+ Byu + N(u), (4)
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where u® is the time derivative of order k, the operators A, B, 1,B,_2,...,By €
LELT), N € C(U;F). By Sobolev type equations we mean those equations that are
not solvable with respect to the highest time derivative in particular when the operator
A is not invertible. Such situations often arise when ker A # {0}. Mathematical models
representable in form (3), (4) will be called Sobolev type mathematical models of higher
order.

It is known that the Cauchy problem (3) for Sobolev type equations is unsolvable
in principle for arbitrary initial data wug,uq,...,u,_1. In our opinion, the most fruitful
approach to the study of such equations is the phase space method developed by
G.A. Sviridyuk and T.G. Sukacheva for the study of semilinear Sobolev type equations of
the first order [2|. The essence of this method consists in reducing the singular equation (2)
to a regular one, defined, however, not on the entire space, but on some subset containing
admissible initial values, understood as the phase space of the original equation.

A theory of complete linear Sobolev type equations of higher order is presented in [3].
Semilinear Sobolev type equations of the first order were studied in [4,5]. Initial-boundary
value problems for Sobolev type equations of the first and higher order find application in
mathematical modelling |6, 7].

The aim of the work is to develop a method of analytical investigation of Sobolev type
mathematical models of higher order. In addition to the phase space method, the methods
of the theory of relatively polynomially bounded operator pencils 8] are also used. In this
article we also rely on the theory of differentiable Banach manifolds [9].

1. Theory of Relatively Polynomially Bounded Operator Pencils

Let 4, § be Banach spaces and operators A, By, By, ..., B,_1 € L(;§). By B denote
the pencil formed by operators B,_1,...,Bi, By. The sets pA(ﬁ) ={ueC: (uA-

W B,y — ... — uBy — Bo)™ € L(F:4)} and oA(B) = C )\ p*(B) are called an A-
resolvent set and an A-spectrum of the pencil B respectively. The operator-function of a
complex variable R;‘(E) = (uW"A—p" B, 1 —...— uB; — By)~! with the domain pA(ﬁ)

is called an A-resolvent of the pencil B.

Definition 1. The operator pencil B is called polynomially bounded with respect to an
operator A (or polynomially A-bounded) if Ja € Ry Vp e C (|lul > a) = (R}(B) €
L(F:U)).

Remark 1. If there exists an operator A~ € £(F;4) then the pencil B is A-bounded.

In [10] A.A. Zamyshlyaeva received the necessary condition for the construction of
projectors

/uka(ﬁ)d,uE@, k=0,1,....,n—2, (5)
o
where the circuit v = {pu € C: |u| =r > a}.

Lemma 1. [10]| Let the operator pencil B be polynomially A-bounded and condition (5)
be fulfilled. Then the operators
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1 = 1 .
pP=_ AB nflA - nflA AB
5 | Bu(B)p" " Adp, Q= o— / p" AR, (B)dp
¥ v

are projectors in spaces Y and § respectively.

Denote U° = ker P, §° = ker@Q, ! = im P, § = im Q. According to lemma 1
U= F=3"aF. By A* (BF) denote restriction of operators A (B;) on
U k=0,1;1=0,1,...,n— 1.

Theorem 1. [10]| Let the operator pencil B be polynomially A-bounded and condition (5)
be fulfilled. Then

(i) AF e LUk T*), k=0,1;

(ii) BF € L(U*:FF), k=0,1,1=0,1,....,n—1;

(iii) operator (A')~1 € L(FHUY) exists;

(iv) operator (BY)™' € L(F;U°) exists.

Using theorem 1 construct operators Hy = (BJ)™'A° € L(U%), H, = (B)™'BY €
L(),..., Hoy = (BY)'BY | € L(4°) and Sy = (AY)'B} € £L(UY), S; = (AH) B! €
LY, ..., Sy = (AY)'BE_, € L(41).

Definition 2. Define the family of operators {K;, KZ,..., K} as follows:
K;=0, s#n, K} =1,
K!'—=Hy, K?=—Hy, ..., K= —H, y,..., K" = H, 1,
K!'= Km \Hy K2=K\ —Kr Hy .. K=K~ —K" H, ;.
K=K} =K' \H,1,q=12,....

The A-resolvent can be represented by a Laurent series [10]

(WA= p" "By — ... — By — Bo) T ==Y plK(BY) (I Q)+
q=0

> (T S+ St + S0) "Ly Q.
q:].

Using this representation we classify the character of the point at infinity of the A-
resolvent of the operator pencil B.

Definition 3. The point oo is called
e a removable singularity of an A-resolvent of the pencil é, if K =0,s=1,2,...,n;

e a pole of order p € N of an A-resolvent of the pencil é, if 3p such that K; # 0, s =

L2,...on, but K; y =0,s=1,2,...,n;

e an essential singularity of an A-resolvent of the pencil é, if K £ O for all g € N.

Further a removable singularity of an A—re_g.olvent of the pencil B will be called a pole
of order 0 for brevity. If the operator pencil B is polynomially A-bounded and the point
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oo is a pole of order p € {0} UN of an A-resolvent of the pencil § then the operator pencil
B is called polynomially (A, p)-bounded.

Theorem 2. [3| Let A, B,,—1, ..., B1, By € L(L,5§) and A be a Fredholm operator. Then
the following statements are equivalent:

(i) The lengths of all chains of the E—adjoined vectors of the operator A are bounded
by number (p+mn — 1) € {0} UN and the chain of length (p+mn — 1) exists.

(ii) The operator pencil B is polynomially (A, p)-bounded.

2. Banach Manifolds

Let 91 be a C*-manifold modelled by a Banach space . By T9 denote a tangent
bundle of the manifold 9t and by 7™ denote a tangent bundle of order n. The set TN
has the structure of a smooth C*~1-manifold, modelled by Banach space 4 by construction,
and tangent bundle 7790 is a manifold of class C*~". Further we assume that k > n.

By 7! denote a canonical projection from a tangent bundle of order [ to a tangent
bundle of order I — 1 where [ = 1,2,...,n and by 7! denote projection from tangent
bundle of order [ to a manifold 9, i.e. 7l = wlx?.. . 7l

Consider a curve v : J — 9 of class C®, (s < k) where J is some interval containing
zero. By canonical lifting of the curve o we call a curve o' in T9 o' : J — T9N such
that mla! = «. Similarly, by the lifting of order [ of curve « in T'9t we call a curve
al 1 J — T'M such that 7la! = a. Therefore lifting of order [ of the curve is a mapping
of class s — 1 > 1.

On the basis of the definition of a second-order differential equation [9] introduce

Definition 4. A differential equation of order n on a manifold M is a vector field & of
class C*=™ on the tangent bundle T" 'O such that for all v € T" 7'M the equality

() =v

holds.

It follows from the definition that £ is a differential equation of order n iff every integral
curve 3 for £ is a lifting of order n — 1 of the curve 7°~!/3. In other words

(mp = 5

Let 01 be an open set in the Banach space 4. In this case, for any vector field on
T"='9, the main part of differential equation

fiTR s A
has n components f = (f1, fo, ..., fn) each of which maps 7" 19 into 4.

Lemma 2. |9] The mapping f of class C*™ is the main part of a differential equation
of order n iff

f(917927 S 79“) = (927937 oo 7gn7fn(91792, S Jgn))

Following [9] we formulate and prove
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Theorem 3. Let M be a Banach C*-manifold, € be a differential equation of order n of
class C*=™. Then for any point (ug,u1,...,U,_1) € T YN there exists a unique curve
u € CZ((—T, T);i)ﬁ), T = 7(Up, Uty .-y Up—1) > 0, I > n, lying in MM, passing through the
point (ug, U1, ..., Up_1) such that

u™ = folu,,, . .. ,u(”_l)),

u® ) =u,, k=0,1,...,n—1. (6)

Proof. Since T" ' is a C*~"*l-manifold and ¢ is a vector field of class C' on T 9N,
then for any point (ug,us,...,un—1) € T" 19N, there exists a unique integral curve
o(t),t € (—,7), passing through the point (ug,uq,...,u,—1) (©(0) = (ug, U, ..., Up_1))-
We represent a curve in the form of n components and consider it locally

o(t) = (u(t), us(t), ..., up_1(t)) € M x Y"1

By lemma 2, if f is the main part of differential equation &, then

$ = (a(t),ir(t), . (1)) = flult),wn(t), . una(t)) =
= (ur(8)s -+ oyt (), fu(u(t), ur (), .. unr (1))

Therefore, the differential equation can be rewritten in more convenient form

I.Ln_l(t) = fn(u(t), Uy (t), c. 7Un_1(t>)
or u™(t) = fu(u(t),ui(t),..., up_1(t)). Making the reverse substitution, we obtain
u™ = folu, @, i, . .. ,u(”_l)).

Thus, the curve (m.p)(t) = u(t),t € (—7,7), lies in M and satisfies (6).

3. The Cauchy Problem
Turn to problem (3), (4) and give definition of its solution.

Definition 5. If a vector-function u € C®((—7,7);4), 7 € R, satisfies equation (4)
then it is called a solution of this equation. If the vector-function satisfies in addition
condition (3) then it is called a solution of (3), (4).

Definition 6. The set B is called a phase space of (4), if
(i) for all (ug, w1, ..., u,—1) € T" I there exists a unique solution of (3), (4);
(i) a solution u = u(t) of (4) lies in P as a trajectory, i.e. u(t) € P for all t € (—7,7).

If ker A = {0} then equation (2) can be reduced to an equivalent equation

u™ = F(u,1,... u™D),
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where F(u,1,...,u™ V) = A~YB,_ju™ V4B, »u"?+ .. 4+ Byu+ N(u)) is a mapping
of class C* by construction. The existence of a unique solution w of (3), (4) for all
(ug, w1, ..., u,—1) follows from theorem 3.

Let ker A # {0} and operator pencil B be (A,0)-bounded, then by theorem 1
equation (4) can be reduced to an equivalent system of equations

0= (I—-Q)(By+ N)(u®+ub),
dn L . dnfl dn72 0 L (7)
%U :Al Q(Bn_lm—l-Bn_QW—i-—‘—BO—i-N)(u +u ),

where u! = Pu,u® = (I — P)u.

Now consider a set M = {u € 4 : (I — Q)(Bou + N(u)) = 0}. Let the set M be not
empty, i.e. there is a point ug € 9. Denote uy! = Pu € UL

The set 9 is called a Banach C*-manifold at point ug if there exist neighborhoods
O C Mand O C U of points ug and u} respectively and a C*-diffeomorphism § : O — O
such that d~! is a restriction of projector P on O. The set 9 is called a Banach C*-
manifold modelled by the space ! if it is a Banach C*-manifold at any point. Connected

C*-manifold is simple if any atlas is equivalent to an atlas including only one map.
Let the following condition be fulfilled

(I-Q)(Bo+N,,): 4% —F° is a toplinear isomorfism. (8)

According to the implicit function theorem [11] there exist neighborhoods O° C 4I° and
O! c U of points u) = (I— P)ug, u = Pug respectively and the operator B € C*°(O'; 0%)
such that u§ = B(u}). Construct an operator § = I+ B : O — 9, §(uf) = up. Then
the operator ! together with the set O makes a map of 9 and is a restriction of P on
5[0 = O C M. Thus we prove

Lemma 3. The set M = {u € U: (I — Q)(Bou + N(u)) = 0} under condition (8) is a
C>-manifold at point uy.

Lets act with the Frechet derivative 5(("2

. 1, of order n on the second equation of
UG, Ug e ey U )

n—1

system (7). Since §(u') = u and

(n) 1) _ d" 1
(udul,..., u}kl)u - % ( ( >)
we obtain equation u(™ = F(u,1,...,u"Y), where

+Bou + N(u)) € C™(Y).
By virtue of theorem 3, we get

Theorem 4. Let the operator pencil B be (A,0)-bounded, N € C*(L;§) and condition
(8) be fulfilled. Then for any (ug,u1,. .., u,_1) € T" "IN there exists a unique solution of
(3), (4) lying in I as trajectory.
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4. Mathematical Model of Ton-Acoustic Waves in Plasma

Turn to the model example (1), (2). In order to reduce (1), (2) to (3), (4) set

U={uecWQ) :u(z) =0,2 € 09}, F=WLQ).

Define operators A = A — X\, By = (N — A), By = —aaa—;z,

3
A, Bs, By, By, By are € L(41;F) for all [ € {0} UN.

Denote the eigenfunctions of the Dirichlet problem (2) for the Laplace operator by

Pkmn = {sin ”’ifl sin M5%2 sin ”7‘:’3}, where k, m, n € N and denote the eigenvalues by

N = _\/(Lk)2 + (%)2 + (”—6”)2 The spectrum o(A) is negative, discrete, finite and

a

Bs = By = Q. Operators

tends only to —oo. Since {@rmn} C C™(£2) we obtain

ptA — 1> By — i? By — pBy — By =

= ™\ 2
- Z [(Akmn - )\)/vL4 + (Akmn - )\ ),U/ —Q ( c ) ] < Lrmn;, * > Lrmn,
kmmn=1

where < -, - > is the inner product in L?(2).

Remark 2. In the case when (i) A ¢ 0(A) the A-spectrum of pencil B oA(B) = {4, :
r,m,n € N,j=1,...,4}, where u _ are the roots of equation.

A = N+ g = N = a1 (WH)Q =0. (9)

C

In the case when (i) (A € o(A)) A (A # N) the A-spectrum of pencil B ¢4 (B) = {,u{k :
k € N}, where uik are the roots of equation (9) with A = A;. In the case when (iii)
(A € o(A)) A (A= X) the A-spectrum of pencil B o4(B) = {u{k ke Nk #I}.

Check condition (5). In case (i) there exists A~' € L(F'; U!) therefore condition (5) is

fulfilled [3].
In case (ii)

/ Z 1< Prmns > Crmndpt _
i /\kmn — )t 4 Mg — N2 — 04(%)2

/ 1 < P, * > sokmndu
" omi Nomn — N)pi2 = a(2)?

70,
when r = 1, therefore condition (5) is not fulfilled and this case is excluded from further
considerations. In case (iii) (A € 0(A)) A (A = X) condition (5) is fulfilled.

Lemma 4. Let (i) A & o(A)) or (ii) (A € o(A)) A (A= N). Then pencil B is polynomially
(A,0)-bounded.

Proof. In case (i) ker A = {0} that is, the operator A has no eigenvectors and, by remark 1
the pencil B is (A, 0)-bounded.
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In case (ii) A € o(A) and A = N construct the chain of B-adjoined vectors of an

eigenvector @9 = >, GkmnPkmn € ker A\ {0}. Since By = B; = O the first three
A=Akmn

g—adjoined vectors can be taken equal to zero. On the fourth we obtain

™

2
BOQOO - BO( Z akmn@kmn) = -« <_> Z AlmnPkmn € 1mA7

C
A=Akmn A=Akmn

since > |agmn| > 0.
)\:)\km,n

Therefore the eigenvector ¢y doesn’t have a g—adjoined vector of order four, the length
of the chains of B-adjoined vectors of operator A is bounded by three, and the chain of
length three exists.

(I
Construct projectors. In case (i) P =1 and @ =1I. In case (ii)
P=1- Z < Qkmns * > Phmn;
A=Akmn
and the projector () has the same form but it is defined on space §. Construct the set
2
M= {uei: Z <« <ﬂ> u+ AU?), Crmn > Premn = 0}

By theorem 4 we have
Theorem 5. (i) Let A & o(A), (up,ur,...,up—1) € U*. Then for some T =
T(ug, u1,. .., up—1) > O there ezists a unique solution v € C"((—7,7),4) of

problem (1), (2).
(ii) Let (A € o(A)) AN = XN), (uo,uty.--Uup_1) € TN and condition (8) be
fulfilled. Then for some T = 7(ug,ui,...,un—1) > 0 there exists a unique solution

u € C"((—7,7),M) of problem (1), (2).
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SAIJAYA KOIIN AJId YPABHEHUA COBOJIEBCKOTI'O TUITA
BBICOKOTI'O ITIOPAOKA

A.A. Bamvrwasesa, E.B. Buiukxos
FOzxxn0-Ypasbckuil rocyapcTBeHHbI yHUBEpCUTET, I. e /Isi0MHCK,
Poccuiickas ®@eneparius

B craTthe nccmenopana mosyInMHEHHAS MATEMATHIECKAS MOIEb HOHHO-3BYKOBBIX BOJTH
B IIa3Me Ha OCHOBe paspenmumocty 3ana4du Komm s abcTpakTHOTO TOJHOTO ITOJIYJIN-
HEIHOro ypaBHEHHUs COOOJIEBCKOrO THITA BHICOKOTO MOpsaKa. Vcmoab3yercs Teopus OTHOCH-
TEJIbHO MOJMHOMUAILHO OIPAHUYEHHBIX TyYKOB OMEepaTopoB, Teopud auddepeHimpyeMbrx
0aHaXOBBIX MHOT000Opa3uit u MeToHd, (Pa30BOro mpocTpancTBa. I1oCTpOEHbB! TPOEKTOPHI, Pac-
MIETISIONINE TTPOCTPAHCTBO B MPSIMYI0 CyMMY, W YDABHEHME HA JIBA KBUBAJEHTHBIX YpaB-
wenwusi. OMHO U3 ypaBHeHui onpenaesnser ¢ha30Boe TPOCTPAHCTBO, U €r0 PEIIEHUEM SBJISIETCS
GbYHKINS CO 3HAUEHUSAMY U3 CODCTBEHHOIO TMOAIIPOCTPAHCTBA, OMEPATOPA, IIPU CTAPIIEI TPO-
W3BOJHON TIO BpeMeHu. PerneHreM BTOPOro ypaBHEHUsT ABIAeTCa (DYHKIUA CO 3HAYCHUAMU
u3 obpa3a mpoekTopa. TakuMm obpa3om, ObLIN MOMYYEHBI JOCTATOYHBIE YCJIOBHUSA Pa3peln-
MOCTH M3y4aeMoil 3ajiauu. B KadecrBe HMPUIOKEHUST PACCMOTPEHO YPABHEHUE YETBEPTOrO
MOPSAIKA C CHHTYJISIPHBIM OMEPATOPOM TIPU CTAPIIEil TPOU3BOIHON 110 BPpEMEHHU, JIEXKAIIEE B
OCHOBE MATEMATHIECKOI MOIEIN MOHHO-3BYKOBBIX BOJIH B T11a3Me. PenyiupoBas MOAEIbHY O
3a/a49y K abCTPaKTHOM, ObLIN TIOMYYeHbI JOCTATOYHbIE YCIOBHUS CYIIECTBOBAHUS €IMHCTBEH-
HOTO PEIeHus TOMYTUHEHHON MATEeMaTHIECKON MOJIEN HOHHO-3BYKOBBIX BOJIH B ILTIa3Me.

Karoueene caosa: ypasrenue coboae8Cko20 Muna 6scok020 nopadka; noaysumetdnoe

YpasHeHue; NOAUHOMUGADHBLT NYHOK ONEPAmopos; memod $as068020 NPOCMPAHCMEA.
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