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We study conditions for the loss of stability in a plastic deformation of a layer of weaker

material in a sheet specimen. The layer is not collinear with the exterior forces acting in the

sheet plane, which are orthogonal to each other and have opposite signs. The parameters

of the problem are: the angle between the layer and the direction of exterior forces; the

ratio of stresses due to exterior forces; the ratio of strengths of the layer material and the

main material of the sheet specimen; the strengthening law of the layer material; the ratio

of thicknesses of the layer and the specimen. Basing on Swift's plastic instability criterion

for a deformation of the layer material, we obtain an algorithm for calculating critical stress

in the layer and critical exterior loading in dependence on the indicated parameters. When

contact strengthening of the layer is absent, our results have explicit analytic expressions.

We �nd conditions under which the layer does not lower the strength of the specimen. We

�nd conditions for the stressed state of the layer to be a pure shear and study this case.

Keywords: inclined plastic layer; plastic instability; stress-strain state; Swift's

criterion.

Introduction. To study the behavior of inhomogeneous constructions in the conditions
of complicated stressed states is necessary for estimating their bearing capacity [1, 2]. One
of the most e�cient methods for calculating critical deformations and stresses for biaxial
loading, corresponding to the loss of stability in a plastic deformation, proposed in [3],
rests on the plastic instability criterion of [4]. Basing on re�nements and development
of the approach of [3], explicit analytic dependence of critical deformations, stresses, and
pressure in homogeneous thin cylindrical hulls and sheet constructions were obtained in [5].
Welded thin hulls and sheets can include layers of weaker material: welded seams, fusion
zones, thermal in�uence zones. The study of critical states of these joints relies on two
theories: the theory of stability loss in a deformation of layer material [2, 3, 5] and the
theory of contact strengthening of the layer material [5�7]. The latter enables us to �nd the
dependence of normal and tangent stresses σy and τxy on the mechanical inhomogeneity
coe�cient K = k+/k− of the joint, as well as the contact strengthening coe�cient g of the
layer. Here k+ and k− are plasticity parameters of the main material and layer material
characterizing the moment when plastic stability is lost.

Inclined layers are of practical interest. They lie at some angle to the direction of
exterior mutually orthogonal loads generating the stresses σ1 and σ2. Welded seams, fusion
zones, and thermal in�uence zones of the factory seams of twisted pipes are important
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examples of layers of this type. It is shown in [5] that for an inclined layer we can use the
computational scheme of the case when the layer is orthogonal to one of the exterior loads.
In this scheme, instead of the coe�cient K we should use the parameter Kincl (see (5)
below) depending on the mechanical and geometric characteristics of the joint and loading
conditions. Assume that the following parameters are speci�ed in the statement of the
problem.

(1) The mechanical inhomogeneity coe�cient K of the joint.
(2) The slope ν of the layer (the angle between the directions of the layer and the

action of the load σ1, see Fig. 1).
(3) The relative thickness χ of the layer, that is, the ratio of its height (thickness) to

its width (thickness of the sheet or hull).
(4) The loading biaxiality coe�cient m = σ1/σ2.
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Ðèñ. 1. Inclined layer in sheet specimen.

We determine the following parameters from the given conditions: the coe�cient g ≥ 1
of contact strengthening of the layer material, which depends on χ, Kincl, and ν, and the
conditional mechanical inhomogeneity coe�cient Kincl also depending on K and ν.

Introduce some notation. Put

B = cos2 ν +m sin2 ν; C = (1−m) sin 2ν. (1)

For brevity, denote τyz by τ . As indicated in [5, pp. 231, 232],

τ = 0,5Cσ2 ; σy av = Bσ2. (2)

Here σy av =
∫ 1

0
σy(x, χ)dx is the mean value of the stress σy on the contact surface. The

reference also includes a formula introducing the contact strengthening coe�cient g:

σy av = 2g
√

(k−)2 − τ 2. (3)

The von Mises plasticity condition for an inclined layer [5, p. 232] is

(σx − σy)
2 + τ 2xy = (k−)2 − τ 2. (4)
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The analog of K, the conditional mechanical inhomogeneity coe�cient [5, p. 233], is

Kincl =

√
(k+)2 − τ 2

(k−)2 − τ 2
= K

√
1 +

K2 − 1

K2

g2C2

B2
. (5)

We consider the case τ = k− separately.
The restriction m > 0 is imposed in [5, Ch. 4]. If m ≤ 0 then the computational

scheme of [5] is inapplicable. The goal of this article is to study the critical states of an
inclined weak layer in a sheet specimen when Kincl > 1 and m < 0.

1. The Special Case of a Stressed State of the Layer. Equation (5) does not cover
the case

|τ | = k−, (6)

B = 0. (7)

Verify that (6) and (7) are equivalent conditions.

Proposition 1. τ = k− ⇔ B = 0 ⇔ m = − ctg2 ν.

Proof. Suppose that τ = k−. Then (2) yields σ2 ̸= 0 and (3) yields

B =
σy av

σ2

=
2g
√

(k−)2 − τ 2

σ2

= 0.

Conversely, if B = 0 then (2) and (3) imply that
√

(k−)2 − τ 2 = 0. By (1), conditions
(6) and (7) are equivalent to each of the conditions

m = − ctg2 ν; C = 2 ctg ν; C = 2
√
−m. (8)

Corollary 1. When the stresses σ1 and σ2 generated by exterior loads satisfy σ1 ≈
−σ2 ctg

2 ν, we have Kincl ≈ ∞, that is, the main material behaves as a rigid body.

Proposition 2. Under the condition |τ | = k− the layer material is in a pure shear state.

Proof. For symmetry reasons, we have τxz = 0. The �uidity equation (4) and (6) yield

σx = σy = σz = 0; τxy = 0. (9)

The equilibrium equations in the inclined layer [5, p. 232] are

∂σx

∂x
+

∂τxy
∂y

= 0;
∂σy

∂y
+

∂τxy
∂x

= 0. (10)

From (9) and (10) we infer that σx = σy = σz = 0 (here σ = (σx + σy + σz)/3 is the
hydrostatic stress). Hence, σy av = σ. Since σy av = Bσ2 by (2), it follows that σ = 0.
Thus, σx = σy = σz = τxy = τyz = 0.

If σ1 < 0 and σ2 > 0, using (2), (6), and (8), we obtain

σ1 =
2k−m

C
= −

√
−mk− = (− ctg ν)k−; σ2 =

2k−

C
=

k−
√
−m

= (tg ν)k−. (11)
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Similarly, for σ1 > 0 and σ2 < 0 condition (6) implies the equalities

σ1 =
2k−m

C
=

√
−mk− = (ctg ν)k−; σ2 =

−2k−

C
=

−k−
√
−m

= (− tg ν)k−. (12)

2. Equal Strength Conditions. Consider the conditions under which the weaker layer
does not lower the strength of the joint. This occurs when the main material reaches the
critical state simultaneously with the layer. For the critical state in the layer to be reached
earlier than in the main material, it is necessary and su�cient that the critical values σ1

and σ2 of stresses satisfy at least one of the restrictions

|σ1| ≤ 2k+, |σ2| ≤ 2k+. (13)

It follows from [7, p. 232] that (13) holds if and only if

g√
B2 + g2C2

≤ K ∨ g |m|√
B2 + g2C2

≤ K. (14)

If m1KC ≥ 1 then (14) holds. If m1KC < 1 then (14) is equivalent to the inequality

g ≤ m1KB√
1−m2

1K
2C2

, m1 = max

(
1;

1

|m|

)
. (15)

This implies the following criterion of equal strength for a homogeneous sheet specimen
and a specimen including a weaker layer:

Proposition 3. In order for the layer not to lower the strength of the joint, it is necessary
and su�cient that m1KC ≥ 1 and the contact strengthening coe�cient reach the value
in the right-hand side of (15).

3. Finding the Parameter k−. To calculate the bearing capacity of a sheet construction,
we have to know the critical values of k+ and k−. The parameter k+, characterizing the
main material of the sheet specimen, is calculated as in the seamless construction [3, 5]. The
parameter k− characterizes the state of the layer material at the moment when the stability
of plastic deformation is lost. It is shown experimentally [8] that for complicated loading
with simultaneous stretching and shear Ludwik's single curve hypothesis is con�rmed in
the form

σi = f(εi), (16)

where σi and εi are the stress and deformation intensities respectively. Thus, we can apply
this hypothesis for the layer material subject to similar loading. Assume that

σi = Aεni , A = enn−nσB. (17)

Here e is Euler's constant, n is a parameter of the material characterizing its plastic
properties (0.1 ≤ n ≤ 0.3 in welded joints), and σB is the strength of the material. Further
arguments carry over easily to other approximations of the dependence (16) proposed
in [5]. Assume that compression occurs in the direction of the action of σ1, and stretching
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occurs in the direction of σ2. Then it is obvious that m = σ1/σ2 < 0. The theory of small
deformations yields

εi =
2ε2σi

σ2(2−m)
. (18)

Since σ2 = (2gk−)/(
√

B2 + g2C2) by [5], we infer from (18) that

ε2 =
εiσ2(2−m)

2σi

=
εiσ2(2−m)

2
√
3k−

=
g(2−m)εi√
3
√
B2 + g2C2

. (19)

Denote by h = h0 exp(ε2) the thickness of the layer in the direction of σ2, where h0 is the
thickness of the layer at the initial moment of loading (see Fig. 1), by t and l the thickness
and width of the sheet, and so V = tlh is the volume of the layer, which is invariant in
the deformation. Denote also by N2 the exterior force acting in the direction of σ2 at the
critical moment of loading. Then

σ2 =
N2

tl
=

N2h

V
=

N2h0

V
exp(ε2).

Thus, (19) implies that at the critical moment of loading

σi = Mσ2 = M
N2h0

V
exp(ε2) = M

N2h0

V
exp

(
g(2−m)εi√
3
√

B2 + g2C2

)
; M =

√
3
√
B2 + g2C2

2g
.

(20)
Applying Swift's criterion [1], that is, equating the di�erentials of the right-hand sides of
(17) and (20), we obtain the deformation intensity at the critical moment of loading:

εi =

√
3n
√

B2 + g2C2

g(2−m)
. (21)

Inserting the right-hand side of (21) into (17), we obtain the following assertion.

Proposition 4. At the critical moment of loading we can calculate the intensity of stresses,
the parameter k−, and the values of stresses of the exterior forces as

σi =

(√
3e
√
B2 + g2C2

g(2−m)

)n

σ−
B ; k− =

σi√
3
; σ1 = mσ2; σ2 =

g(2−m)σi√
3
√
B2 + g2C2

. (22)

Let us describe the algorithm for calculating the critical values of stresses of the
exterior loadings. If the relative thickness χ of the layer is large, χ ≥ 1, then the contact
strengthening of the layer is absent: g = 1. In this case (22) is an explicit formula. For
thin layers g > 1. Then (5) and (22) are implicit formulas. Putting g = 1 in (5) and
(22), we can �nd the �rst approximations to the parameters k− and K, and then Kincl.
KnowingKincl, we calculate the parameter g using the algorithm of [7], and then apply (22)
to �nd the second approximation for k−. This enables us to launch an iterative process
for calculating σ1 and σ2. On each step we calculate K using (5) and check the equal
strength condition (13) in the form (14). If it holds on some step then the calculation
stops. Otherwise, the procedure stops when g stabilizes.
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Conclusions. In this article we obtained an algorithm for calculating the critical values of
stress and deformation in a layer and the critical values of exterior loadings in dependence
on the speci�ed parameters. When the thickness of the layer is comparable to or greater
than that of the sheet, we gave explicit analytic expressions for these quantities. We studied
the special case of weaker layer location in which the stressed state of the layer is a pure
shear. We found conditions under which the weaker layer does not lower the strength of
the joint.
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ÊÐÈÒÈ×ÅÑÊÎÅ ÑÎÑÒÎßÍÈÅ ÍÀÊËÎÍÍÎÃÎ ÑËÎß

Â ËÈÑÒÎÂÎÌ ÎÁÐÀÇÖÅ ÏÐÈ ÎÒÐÈÖÀÒÅËÜÍÎÌ

ÊÎÝÔÔÈÖÈÅÍÒÅ ÄÂÓÕÎÑÍÎÑÒÈ ÍÀÃÐÓÆÅÍÈß

Â.Ë. Äèëüìàí, À.Í. Äèÿá

Èññëåäóþòñÿ óñëîâèÿ ïîòåðè óñòîé÷èâîñòè ïðîöåññà ïëàñòè÷åñêîãî äåôîðìèðî-

âàíèÿ ñëîÿ èç ìåíåå ïðî÷íîãî ìàòåðèàëà â ëèñòîâîì îáðàçöå. Ñëîé íå êîëëèíåàðåí
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âíåøíèì ñèëàì, äåéñòâóþùèì â ïëîñêîñòè ëèñòà, îðòîãîíàëüíûì äðóã äðóãó è èìåþ-

ùèì ðàçíûå çíàêè. Ïàðàìåòðàìè çàäà÷è ÿâëÿþòñÿ: óãîë ìåæäó ñëîåì è íàïðàâëåíè-

åì âíåøíèõ ñèë; îòíîøåíèå íàïðÿæåíèé, ïîðîæäàìûõ âíåøíèìè ñèëàìè; îòíîøåíèå

ïðåäåëîâ ïðî÷íîñòè ìàòåðèàëà ñëîÿ è îñíîâíîãî ìàòåðèàëà ëèñòîâîãî îáðàçöà; çàêîí

óïðî÷íåíèÿ ìàòåðèàëà ñëîÿ; îòíîøåíèå òîëùèíû ñëîÿ ê òîëùèíå îáðàçöà. Íà îñíîâå

êðèòåðèÿ Ñâèôòà ïëàñòè÷åñêîé íåóñòîé÷èâîñòè ïðîöåññà äåôîðìèðîâàíèÿ ìàòåðèàëà

ñëîÿ ïîëó÷åí àëãîðèòì äëÿ âû÷èñëåíèÿ êðèòè÷åñêîé èíòåíñèâíîñòè íàïðÿæåíèé â ñëîå

è êðèòè÷åñêèõ âíåøíèõ íàãðóçîê â çàâèñèìîñòè îò óêàçàííûõ ïàðàìåòðîâ. Â ñëó÷àå

îòñóòñòâèÿ êîíòàêòíîãî óïðî÷íåíèÿ ñëîÿ ïîëó÷åííûå ðåçóëüòàòû èìåþò ôîðìó ÿâíûõ

àíàëèòè÷åñêèõ âûðàæåíèé. Íàéäåíû óñëîâèÿ, ïðè êîòîðûõ ñëîé íå ñíèæàåò ïðî÷íî-

ñòè îáðàçöà. Íàéäåíû óñëîâèÿ è èññëåäîâàí ñëó÷àé, êîãäà íàïðÿæåííîå ñîñòîÿíèå ñëîÿ

ÿâëÿåòñÿ ÷èñòûì ñäâèãîì.

Êëþ÷åâûå ñëîâà: íàêëîííûé ïëàñòè÷åñêèé ñëîé; ïëàñòè÷åñêàÿ íåóñòîé÷èâîñòü;

íàïðÿæåííî-äåôîðìèðîâàííîå ñîñòîÿíèå; êðèòåðèé Ñâèôòà.
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