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ON FACTORIZATION OF A DIFFERENTIAL OPERATOR
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Spectral properties of linear operators are very important in stability analysis of
dynamical systems. The paper studies the non-selfadjoint second order differential operator
that originated from a steady state stability problem in dynamic of viscous Newtonian
fluid on the inner surface of horizontally rotating cylinder in the presence of gravitational
field. The linearization of the thin liquid film flow in the lubrication limit about the
uniform coating steady state results into the operator which domain couples two subspaces
spanned by positive and negative Fourier exponents which are not invariant subspaces of the
operator. We prove that the operator admits factorization and use this new representation
of the operator to prove compactness of its resolvent and to find its domain.
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Introduction

Depending on the parameters involved, the dynamics of the film of viscous fluid can be
described by different asymptotic equations. Under the assumption that the film is thin enough
for viscous entrainment to compete with gravity, the time evolution model of a thin film of
liquid on the inner surface of a cylinder rotating in a gravitational field was based on the
lubrication approximation and examined by Benilov, O’Brien, and Sazonov |2, 3|. The related
Cauchy problem has the following form:

Yt + l[y] =0, y(O,x) = Yo, y(_7T>t) = y(7T>t)v (S [_7]—771—}7 t>0 (0'1)

where J J
lly] = e ((1 —a cosz)y(zr) + bsinx - cyl(x)> , a,b>0 (0.2)
x

T

Eigenmode solutions are very important in stability analysis, because even a single growing
mode can destabilize an otherwise stable system. In case when all modes are bounded in time and
the corresponding eigenfunctions form a complete set, the system normally regarded as a stable
one. Because, an arbitrary initial condition can be represented as a series of these eigenmodes;
and since all of them are stable, so expected to be the solution to the initial- value problem.

There are however counterexamples to the arguments above when each term of the series is
bounded but the series as a whole diverges and the solution develops a singularity in a finite time.
This effect was observed by Benilov, O’Brien, and Sazonov [2] for the problem 0.1 when parameter
in (0.2) a = 0. For this case when the effect of gravitational drainage was neglected because of
infinitesimally thin film they studied stability of the problem asymptotically and numerically. It
was shown that even for infinitely smooth initial values numerical solutions blow up after a small
number of iterations.

The spectrum of the linear operator L that is defined by the operation I[.] and periodic
boundary conditions y(—m) = y(7w) for the special case when the parameter a = 0 was studied
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rigorously in [8, 6, 9]. Using different approaches they justified that if the parameter b restricted
to the interval [0,2] then the operator L is well defined in the sense that it admits closure in
L?(—m, 7) with non-empty resolvent set without breaking the boundary conditions y(—7) = y(m).
The spectrum of the operator L is discrete and consists of simple pure imaginary eigenvalues only.
As a result all eigenfunctions have the following symmetry y\(—x) = ya(x). The more general
operator with the function sin(z) replaced by the arbitrary 27-periodic functions was studied in
[4] and it was proved that this operator multiplied by ¢ belongs to a wide class of PT-symmetric
operators which are not similar to self-adjoint but nevertheless possesses purely real spectrum
due to some obvious and hidden symmetries.

The phenomenon of the coexistence of the neutrally stable modes with explosive instability
of the numerical solutions [2] (which correspond to drops of fluid forming on the ceiling of the
cylinder where the effect of the gravity is the strongest) was studied analytically and explained in
terms of the absence of the Riesz basis property of the set of eigenfunctions in [5]. The question
of a conditional basis property of the set of eigenfunction is still open.

For the case when a # 0, as it was discussed in [3], the spectral properties of the operator L
are not expected to differ a lot from the case a = 0.

The goal of this paper is to find a factorization of the operator L (under some restrictions
on parameters a and b) that would be in some sense similar to one we constructed for the special
case a = 0 in [7] (in this case the operator L is J-self-adjoint with the operator J defined as a shift
J(f(x)) = f(m — z)) and to examine some properties of the operator L using this factorization.
The main difficulty to overcome here is an existing coupling between two subspaces spanned by
positive and negative Fourier exponents which are not invariant subspaces of the operator L if
a # 0. We also prove that the non-self-adjoint differential operator L has compact resolvent and
as result spectrum of L is discrete with the only accumulating point at infinity.

1. Factorization of the non-self-adjoint operator L

We denote by ©(T') and R(T') the domain and the range of linear operator T' respectively.
The notation £2 is used for the standard Lebesgue space of scalar functions defined on the interval
(—m, 7). From here on L is the indefinite convection-diffusion operator L :

d

L% L2, (Ly)(z) = P ((1 —a cosx)y(z)+bsinx - dz(;)) , b#0

with the domain of all absolutely continuous 27-periodic functions y(z) such that (Ly)(z) € £2.
The latter means, in particular, that we consider y(x) such that the function

<(1 —a cosx)y(x) +bsinz - dZS;)>

can be defined at zero as a continuous function and by this way it is converted in an absolutely
continuous function.
In addition, we define the operator S :

L2 L%, (Sy)(z) =y (x),
where /() € L2, y(—7) = y(r), and the operator M : £ — L2,

dy(x)

(My)(z): =(1—acosx)y(x)+bsinz - .

with the domain of all functions y(x) € £2? absolutely continuous on (—, 0) U (0, 7) and such
that (My)(x) € £2. Note, that, for example, y(z) = /3 € ®(M). The operator M can also be
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represented by the following expression
(My)(z) = (1= (a+0b) cosz)y(z) + b(sinz - y(:n))/

Theorem 1. If the parameters a and b satisfy the inequality 2a + b < 2, then L is a closed
operator with a closed range and L = SM.

Proof. Let us consider the operator A :
L% L% (Ay)(z) = (sin(z)y(z))

with D(A) = {y(z) | y(z), (Ay)(x) € L2}. Then D(A) = D(M) and a function y(z) € D(A) can
be written as

y(x) = LI ((C(l + Signx)/2 +¢1(1 — Signx)/Q) + /IG(t)dt>, (t) € L2 (1.1)
0

sin(z)
If £ > 0 then .
|/ o()dt| < a(x) - 372,
0

where a(x) = ( [y 10(x)[*dx) /2 Since the two summands in (1.1) have different growth orders
as x — 0 this implies that if y(z) € £2 then ¢ = 0 and

1 X
y(z) = Sin(2) ‘/0 0(t)dt. (1.2)
Moreover,
1/2

A small modification of the same reasoning leads to the following estimation for every x € (—m, )

|:C|1/2

ly(z)] < -afx). (1.4)

sin(z)]
with a(z) = | [7[6(x)[2dz|".
Alternatively the same function y(z) can be written as

_ L 2
y(x) = Sn(7) (¢ /x o(t)dt), 6(t) € L. (1.5)
with the same 6(x) as in (1.1). Representation (1.5) yields the following relations
-1 ™
y(x) = Sn () /w o(t)dt (1.6)
and 12
(m—x)
o) < T ) (1.7
: T 9 1/2
with §(z) = ’fx 16(x)] dm} :
It follows from (1.2) and (1.6) that
/ 6(t)dt = 0. (1.8)
0
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Starting from the point —7 one can also obtain that

y(z) = Sinl(x) - _I o(t)dt, (1.9)
T T 1/2
o)l < TS (1.10)
with v(z) = ([*_|0(x)[2dz|"* an 0
0(t)dt = 0. (1.11)

—T
Now we are ready to calculate M*. Using smooth functions y(z) such that y(x) = 0 in some
neighborhoods of the points —m, 0 and 7 (neighborhoods depend of y(z)) it is easy to show that

(M*2)(z) = (1 — a cosz)z(z) — b(sinz - z(m)),
for every z(z) € ®(M™). Since the condition z(z) € D(M*) yields
2(z) € £2 and (M*z)(x) € L2, (1.12)
z(x) € ®(A) and for z(x) the conditions of the type (1.4), (1.7) and (1.10) are satisfied. So,

lim y(z)z(z)sinx = lim y(z)z(z)sinz = lim y(x)z(z)sinz =0 .

z—0 r——m+0 rz—1—0

Taking into account the latter one can check that
(My,z) = (y. M7 z)

for every y(z),z(x) € D(M) = D(A), where D(M#*) = D(A) and M# is defined by the same
differential expression as M*. Thus, D (M) = D(M*). The same reasoning shows that M** = M,
so M is closed.

Let

=u(z), y(x),uz)e L

Our aim is to express y(z) via u(z). Let z € (—m, 7),  # 0. Then y(x) =

(1 —acosz)y(x)+bsinz - dZ(;)
(c(1 + Signz)/2 + e1(1 — Signz)/2) - (sin )2/ - (cot | /2) /" +

%(sin |z)*/° - (cot |z|/2)"/ /xu(t)(sin\t)z (sint)~" - (tan |t|/2)"/dt,
0

where ¢ and ¢; are constants. The estimations that follow closely depend of a relation between a
and b. We assume that 2a + b < 2. Then for = > 0

| sy G0 anegz) = [ oo G0 ) v,
0 0
where v(t) = u(t)(sin )~ - (tan t/2)M/0 () G- (£) 7, s0,

\ / )(sint) =Y . (tant/2)Y0dt] <

b 22ab 2 1/2
“2—2a—bx /\v dt
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Thus, the first summand (if ¢ # 0) for y(z) has the order 2% and the second one has the order

7 12a(x) with lin% a(r) = 0. Since y(x) € L2, ¢ = 0. The same reasoning shows that ¢; = 0.
xr—

Thus,

1 * a
y(w) = 3 (sin|a)*" - (cot y:c|/2)1/b/ u(t)(sin[¢))7% - (sint) " (tan|e[/2)0dr. (1.13)
0
In particular, for u(z) = 1 we have
yo(x): = %(sin |2/ - (cot \a:|/2)1/b/ (sin|t)) % - (sint) ™" - (tan |¢]/2)"/bdt.
0

Some elementary estimations show that there are finite limits lin%) yo(z), lim yp(z) and lim yo(z)
xT— r——T T—T

with lim yo(z) = lim yo(z). Let us show these relations. First, for ¢ > 0 we define w(t): =
T——T XT—T

sint\—7—1 tan(t/2)\1/b : _ b
(Tt> p L, (%) . Then tLH}rlow(t) = (1/2)1/ . Moreover, for x > 0

yo(x): = %(Sinx)a/b . (cot :U/2)1/b/ w(t)tfgfprl/bdt,
0

S0
1 b a
yo(w) = 3 (sin@)" (cot 2/2) /P (&) (@) TH Y,
—a
where & € (0,z). The latter yields y(0): = lirﬁoy(w) = ﬁ Second, for ¢ < m we define
. in —-2-1 T—t 1/b . o L
wy(t): = (2|70 (% - tan(t/2))"”. Then _}l_li_I?_Oer(t) =1 and for z(z): = (1+a)-

Yo(w) - (sin(x/Q))% we have

2(z) = 2 (sinz) -/0$w+(t)(7r—t)_g_1_1/bdt.

Let us fix € > 0 Then there is § > 0 such that 1 — e < wy(z) < 1+ € for every x € (7w — 0, 7).
Next, for the same x

T—0
sz) = 1T (sin:n)b-(/o wy (t) (7 — 1)~ 51 Vegp

/x wy () — )51y,
T—0

Since

/3:5 wy () (m — t)_%_l_l/bdt) = ﬁw(yxﬁ)((w —x)" b —§ b

with v, 5 € (7 — 9, m),

(=9 ((r - Z)T =) < /7;w+(t)(7r — )" <
151@(1 + 6)((7r — :c)_HTa — 6_1#)

Moreover, for fixed §

a+1

)
% (sinz) " / wi (t) (7 — )51 egr —
0

lim
t—+m—0
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and
a+1 14+a
li inz) v - 5~ =0
t_)ir}rl_o(smm) w(vys) ,
so the equality lim yo(z) = :l—Ta is practically evident. Note also that yo(x) is even.
T—T

Thus, the function yg(x) is Continuous on [—m, 7| and satisfies the periodic conditions.
Now let u(z) = ¢+ [y #(t)dt, where ¢ = const and ¢(x) € L*. Then for z > 0:

| [5 o(t)dt] < xl/Q(fO lp(t) )1/2. The latter estimation and (1. 13) yield lim y( ) =c-yo(0 ) The
same function can be re-written as following u(z) = c4 + f t)dt or u(m) =c_+ f t)dt.
Then the estimations | [ ¢(t)dt| < (r—z)/2(— [T ]¢(t) )1/2, z € (o,m) and | [*_o(t)dt] S (m+
)1/2(f_7r lp(t)] )1/2, x € (—m,0) together with Representation (1.13) yield aljl—IEr y(x) = cq - yo(m)
and lim y(x) = c_-yo(—m). Thus, y(z) satisfies the periodic condition if and only u(x) satisfies.

The gi;&gr yields the equality
L=SM. (1.14)

Moreover, we have shown that for every u(z) = ¢+ [ ¢(t)dt with ¢(x) € L? there is absolutely
continuous on [—m, 7] function y(z), such that (My)(z ) u(z), so R(M) is dense in L? or,
equivalently, Ker(M*) = {0}.

Note, that M is boundedly invertible. Indeed, M = D + iC, where C: £? — L2,

(Cy)(z): = z{g coszy(x) —b(sinx - y(a:))’}, D(C) =2(M)

and D: £?— L2,
(Dy)(z): = (1= (a+ g) cos z)y(x).

Since D is bounded, D(C) = {y(z) | y(x),(Cy)(x) € £} and a similar reasoning shows that
D(C) = D(A). Thus, if y(x),z(x) € D(C), then for y(x) and z(x) Conditions (1.7) and (1.10)
hold true, so

21\]{‘1(1) sin(m — e)y(m — €)z(m —€) = l{% sin(—7m + €)y(—m + €)z(—m +¢€) = 0.
Since C* is defined by the same differential expression as C, the above equalities show that
D(C*) =D(A). Thus, C is self-adjoint. Moreover, D is positive and boundedly invertible, so the
problem of invertibility of M is equivalent to the problem of regularity of non-real numbers for a
self-adjoint operator (for a more detail reasoning see, for instance, [7]).

Now let us prove that L is closed. The operator S restricted to the subspace £; C L£? of
functions orthogonal to constants has a bounded inverse. Let us find M~!(L1). If (My)(z) €
Ly, then [T (My)(z)dz = 0, but [* (y(z)sinz)'dz = 0, so y(z) € M~(Ly) if and only if
y(x) € (M) and [T (1 — (a+b) cosz)y(x)dz = 0. Let Ly: = {(1 — (a+0b) cosm)}L. Since
for yo(z) we have 2 = [T (Myo)(z)da = [T yo(z)(1 — (a + b) cosz)dz, yo(z) & L2 and
L% = LoH{p - yo(z)}uec. Now let a sequence {yx(z)} be such that yx(z) — y(x) and zx(z) =
(Lyg)(z) — z(z). Then (My)(z) = vi(x) + c, where vi(z) = ((S|g,) 12)(2), ¢k = const,
k =1,2,... . Since (S|z,)"! is bounded, the sequence {vi(x)} has a limite v(z). In turn, in
virtue of similar reasons the sequence wy(x) = (M ~!vy)(z) also has a limite. Simultaneously
yr(z) = (Mg + Ci))(z) = wi(z) + cxyo(z). Thus, the sequence {c;} has a limite. The rest is
straightforward.
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Corollary 1. If the parameters a and b satisfy the inequality 2a + b < 2, then the set D (L) is
the linear sub-manifold H of the Sobolev space H'(—m,T):

D(L)=H:feH (~nn), f(r)=f(-n) sin(z)f €H (~m,7)
and is a Hilbert space with the norm defined as:

A1 = (£ + [ sin(@) £ ()17

The reasoning of this corollary is the same as the reasoning of the corresponding proposition in
[7].
For the next step we need the following simple remark.

Lemma 1. Let H be a Hilbert space, 1,2 € H, (v1,72) # 0. Let Hy: = {z1}+, Ha: = {x2}+.
Let Py and P» be ortho-projections onto the subspaces H1 and Ha respectively. Then Paly, is one-
to-one mapping onto Hs.

Proof. Let Hy: = Hi N He. Without loss of generality we can assume that [|z1] = [Jz2] = 1,
(x1,22) = a > 0. Then Hy = {p- (w2 — - x1) }pec ® Hs, Ho = {1+ (21 — - 22) } pec ® H3. Since
Polyy = Iy, and Py(xg — - x1) = - (1 — « - x2), the rest is evident.

O
Theorem 2. If the parameters a and b satisfy the inequality 2a + b < 2, then the resolvent of L
1s compact of the Hilbert-Schmidt type.

Proof. Let Lo C £2 be the subspace of constants, £1: = Lg. Since Lo C D(L) and R(L) = L1,
the operator L has the following matrix representation

0 0
L =
[ Ly Ln }

with respect to the decomposition £2 = Lo @ L1, where the operator Lig: 1 — a-sinz is bounded
and D(L1y) = {f(x)|f € H'(—m,7), f(r) = f(—), sin(x) f'(z) € H'(—m,7), [, f()dw =
0}. Let us analyze the properties of Li;. From Theorem 1 we have L3 = SM|.,. Let Lo =
M®(M)NLY), yo(z) = (M~11)(z), 20(z) = (M*)~1)(x). Then for y(z) € D(M)N L1 we have
0= (y,1) = (y, M*29) = (My, 20), so L2 = {z}*. From the other hand, (1, z9) = (Myo, 20) =
(yo, M*z0) = (yo, 1). Since (see the proof of Theorem 1) (yo, 1) # 0, the pair {1, 2o} is under the
conditions of Lemma 1. Let P; be the ortho-projection onto £1. Then Li; = S - (Pi|z,) - (M|z,),
so Lt = (MY zy) - (Pilz,) ™" - (S|z,) " Thus, Lij' is an operator of the Hilbert-Schmidt type.

Since
R,(0) 0

Ry(L) = ,
ML) $R\(L11)Lio  Ra(L11)

the rest is straightforward. -
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VK 517.984

O ®PAKTOPUSALIN OAJHOI'O JJTNNOPEPEHIINAJIBHOI'O
OIIEPATOPA, BOSHUKAIOIIEI'O B I'M/IPOJINMHAMUMKE

M.B. Yyeynosea, B.A. IlImpayc

CrekTpaJibHble CBONCTBa JIMHEHHBIX OIEPATOPOB UIPAIOT BAaXKHYIO POJIb B AHAJIU3e
YCTOMYMBOCTY JIMHAMUYIECKUX CUCTEM. B 3aMeTKe UCCIIeYIOTCS CBONCTBA HECAMOCOIIPSI?KEH-
HOrO JinddepeHIaIHLHOrO OlepaTopa BTOPOTo MOPSIIKA, CBI3AHHOIO C UCC/IEIOBAHIEM PO~
6JIeMbI YCTOWIUBOCTH CTAIIMOHAPHOTO JIMHAMUYECKOTO COCTOSIHUSI TOHKON IIJIEHKU, 00pa30-
BaHHOU BA3KON HBIOTOHOBCKOW KHMJIKOCTBIO U PACIIOJIOXKEHHOI Ha BHYTPEHHEIl II0OBEPXHOCTHU
BPAIAOIErOCS TUJINHIPA, [IPU HAJWYAKA I'PABUTAIMOHHOIO MOJIsi. JIMHeapusamus 1o Ma-
JIOMy mapamerpy (OTHONIEHUIO TOJIIMHBI IOTOKA K Pa3Mepy IUJINHJIPA) B 9TOM CJIydae Mo-
poxaer auddepeHInaIbHbII OmepaTop ¢ 00JACTHIO ONPEIETCHNUs, BJOKEHHON B TPAMYIO
CYMMY JIBYX MOJITPOCTPAHCTB, HATAHYTHIX, COOTBETCTBEHHO, Ha Gasucwl {e™*} u {e~ "7}
(n > 0), npuyeM yKasaHHbIE HOAIPOCTPAHCTBA HE fABJISIOTCH UHBAPUAHTHBIME 10 OTHOIIIE-
HHUIO K OIEPaTOpy, M OJHOMEDPHOIO MHOMIIPOCTPAHCTBA KOHCTAHT. JIOKA3BIBAETCs, ITO ITOT
oIIepaTop JOIYCKaeT MPEeICTABIEHNE B BUJIE IPOU3BEIEHUS IBYX JuddepeHInalbHbIX Ole-
paTopos 1epBoro nopsiaka. [loyueHtoe npejcraBieHne UCIOIb3YETCs IS JIOKA3aTeIbCTBA
KOMIIAKTHOCTH PE30JIbBEHTHI UCCIETYEMOrO OIEPATOPa U HEMTOCPEJICTBEHHOTO OIUCAHUS €ro
0bJTacTn OTPEIeIeHNSI.

Karouesvie crosa: cnekmpaivhoi anasusd duddepenyuaivrozo onepamopa, paxmopu-
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