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Spectral properties of linear operators are very important in stability analysis of
dynamical systems. The paper studies the non-selfadjoint second order differential operator
that originated from a steady state stability problem in dynamic of viscous Newtonian
fluid on the inner surface of horizontally rotating cylinder in the presence of gravitational
field. The linearization of the thin liquid film flow in the lubrication limit about the
uniform coating steady state results into the operator which domain couples two subspaces
spanned by positive and negative Fourier exponents which are not invariant subspaces of the
operator. We prove that the operator admits factorization and use this new representation
of the operator to prove compactness of its resolvent and to find its domain.
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Introduction
Depending on the parameters involved, the dynamics of the film of viscous fluid can be

described by different asymptotic equations. Under the assumption that the film is thin enough
for viscous entrainment to compete with gravity, the time evolution model of a thin film of
liquid on the inner surface of a cylinder rotating in a gravitational field was based on the
lubrication approximation and examined by Benilov, O’Brien, and Sazonov [2, 3]. The related
Cauchy problem has the following form:

yt + l[y] = 0, y(0, x) = y0, y(−π, t) = y(π, t), x ∈ [−π, π], t > 0 (0.1)

where
l[y] =

d

d x

(
(1− a cosx)y(x) + b sinx · d y(x)

d x

)
, a, b > 0 (0.2)

Eigenmode solutions are very important in stability analysis, because even a single growing
mode can destabilize an otherwise stable system. In case when all modes are bounded in time and
the corresponding eigenfunctions form a complete set, the system normally regarded as a stable
one. Because, an arbitrary initial condition can be represented as a series of these eigenmodes;
and since all of them are stable, so expected to be the solution to the initial- value problem.

There are however counterexamples to the arguments above when each term of the series is
bounded but the series as a whole diverges and the solution develops a singularity in a finite time.
This effect was observed by Benilov, O’Brien, and Sazonov [2] for the problem 0.1 when parameter
in (0.2) a = 0. For this case when the effect of gravitational drainage was neglected because of
infinitesimally thin film they studied stability of the problem asymptotically and numerically. It
was shown that even for infinitely smooth initial values numerical solutions blow up after a small
number of iterations.

The spectrum of the linear operator L that is defined by the operation l[.] and periodic
boundary conditions y(−π) = y(π) for the special case when the parameter a = 0 was studied
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rigorously in [8, 6, 9]. Using different approaches they justified that if the parameter b restricted
to the interval [0, 2] then the operator L is well defined in the sense that it admits closure in
L2(−π, π) with non-empty resolvent set without breaking the boundary conditions y(−π) = y(π).
The spectrum of the operator L is discrete and consists of simple pure imaginary eigenvalues only.
As a result all eigenfunctions have the following symmetry yλ(−x) = yλ(x). The more general
operator with the function sin(x) replaced by the arbitrary 2π-periodic functions was studied in
[4] and it was proved that this operator multiplied by i belongs to a wide class of PT -symmetric
operators which are not similar to self-adjoint but nevertheless possesses purely real spectrum
due to some obvious and hidden symmetries.

The phenomenon of the coexistence of the neutrally stable modes with explosive instability
of the numerical solutions [2] (which correspond to drops of fluid forming on the ceiling of the
cylinder where the effect of the gravity is the strongest) was studied analytically and explained in
terms of the absence of the Riesz basis property of the set of eigenfunctions in [5]. The question
of a conditional basis property of the set of eigenfunction is still open.

For the case when a 6= 0, as it was discussed in [3], the spectral properties of the operator L
are not expected to differ a lot from the case a = 0.

The goal of this paper is to find a factorization of the operator L (under some restrictions
on parameters a and b) that would be in some sense similar to one we constructed for the special
case a = 0 in [7] (in this case the operator L is J-self-adjoint with the operator J defined as a shift
J(f(x)) = f(π − x)) and to examine some properties of the operator L using this factorization.
The main difficulty to overcome here is an existing coupling between two subspaces spanned by
positive and negative Fourier exponents which are not invariant subspaces of the operator L if
a 6= 0. We also prove that the non-self-adjoint differential operator L has compact resolvent and
as result spectrum of L is discrete with the only accumulating point at infinity.

1. Factorization of the non-self-adjoint operator L

We denote by D(T ) and R(T ) the domain and the range of linear operator T respectively.
The notation L2 is used for the standard Lebesgue space of scalar functions defined on the interval
(−π, π). From here on L is the indefinite convection-diffusion operator L :

L2 7→ L2, (Ly)(x) =
d

d x

(
(1− a cosx)y(x) + b sinx · d y(x)

d x

)
, b 6= 0

with the domain of all absolutely continuous 2π-periodic functions y(x) such that (Ly)(x) ∈ L2.
The latter means, in particular, that we consider y(x) such that the function

(
(1− a cosx)y(x) + b sinx · d y(x)

d x

)

can be defined at zero as a continuous function and by this way it is converted in an absolutely
continuous function.

In addition, we define the operator S :

L2 7→ L2, (Sy)(x) = y′(x),

where y′(x) ∈ L2, y(−π) = y(π), and the operator M : L2 7→ L2,

(My)(x) : = (1− a cosx)y(x) + b sinx · d y(x)
d x

with the domain of all functions y(x) ∈ L2 absolutely continuous on (−π, 0) ∪ (0, π) and such
that (My)(x) ∈ L2. Note, that, for example, y(x) = x−1/3 ∈ D(M). The operator M can also be
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represented by the following expression

(My)(x) =
(
1− (a + b) cos x)y(x) + b (sinx · y(x)

)′
.

Theorem 1. If the parameters a and b satisfy the inequality 2a + b < 2, then L is a closed
operator with a closed range and L = SM .

Proof. Let us consider the operator A :

L2 7→ L2, (Ay)(x) = (sin(x)y(x))′

with D(A) = {y(x) | y(x), (Ay)(x) ∈ L2}. Then D(A) = D(M) and a function y(x) ∈ D(A) can
be written as

y(x) =
1

sin(x)
·
((

c(1 + Signx)/2 + c1(1− Signx)/2
)

+
∫ x

0
θ(t)dt

)
, θ(t) ∈ L2. (1.1)

If x > 0 then
|
∫ x

0
θ(t)dt| ≤ α(x) · x1/2,

where α(x) =
( ∫ x

0 |θ(x)|2dx
)1/2. Since the two summands in (1.1) have different growth orders

as x → 0 this implies that if y(x) ∈ L2 then c = 0 and

y(x) =
1

sin(x)
·
∫ x

0
θ(t)dt. (1.2)

Moreover,

|y(x)| ≤ x1/2

sin(x)
· α(x). (1.3)

A small modification of the same reasoning leads to the following estimation for every x ∈ (−π, π)

|y(x)| ≤ |x|1/2

| sin(x)| · α(x). (1.4)

with α(x) =
∣∣ ∫ x

0 |θ(x)|2dx
∣∣1/2.

Alternatively the same function y(x) can be written as

y(x) =
1

sin(x)
· (c̃−

∫ π

x
θ(t)dt

)
, θ(t) ∈ L2. (1.5)

with the same θ(x) as in (1.1). Representation (1.5) yields the following relations

y(x) =
−1

sin(x)
·
∫ π

x
θ(t)dt (1.6)

and

|y(x)| ≤ (π − x)1/2

sin(x)
· β(x) (1.7)

with β(x) =
∣∣ ∫ π

x |θ(x)|2dx
∣∣1/2.

It follows from (1.2) and (1.6) that
∫ π

0
θ(t)dt = 0. (1.8)
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Starting from the point −π one can also obtain that

y(x) =
1

sin(x)
·
∫ x

−π
θ(t)dt, (1.9)

|y(x)| ≤ (−π + x)1/2

| sin(x)| · γ(x) (1.10)

with γ(x) =
( ∫ x

−π |θ(x)|2dx
∣∣1/2 and ∫ 0

−π
θ(t)dt = 0. (1.11)

Now we are ready to calculate M∗. Using smooth functions y(x) such that y(x) ≡ 0 in some
neighborhoods of the points −π, 0 and π (neighborhoods depend of y(x)) it is easy to show that

(M∗z)(x) =
(
1− a cosx)z(x)− b (sinx · z(x)

)′

for every z(x) ∈ D(M∗). Since the condition z(x) ∈ D(M∗) yields

z(x) ∈ L2 and (M∗z)(x) ∈ L2, (1.12)

z(x) ∈ D(A) and for z(x) the conditions of the type (1.4), (1.7) and (1.10) are satisfied. So,

lim
x→0

y(x)z(x) sin x = lim
x→−π+0

y(x)z(x) sin x = lim
x→π−0

y(x)z(x) sinx = 0 .

Taking into account the latter one can check that

(My, z) = (y,M#z)

for every y(x), z(x) ∈ D(M) = D(A), where D(M#) = D(A) and M# is defined by the same
differential expression as M∗. Thus, D(M) = D(M∗). The same reasoning shows that M∗∗ = M ,
so M is closed.

Let
(1− a cosx)y(x) + b sinx · d y(x)

d x
= u(x), y(x), u(x) ∈ L2.

Our aim is to express y(x) via u(x). Let x ∈ (−π, π), x 6= 0. Then y(x) =
(
c(1 + Signx)/2 + c1(1− Signx)/2

) · (sin |x|)a/b · (cot |x|/2)1/b +

1
b
(sin |x|)a/b · (cot |x|/2)1/b

∫ x

0
u(t)(sin |t|)−a

b · (sin t)−1 · (tan |t|/2)1/bdt,

where c and c1 are constants. The estimations that follow closely depend of a relation between a
and b. We assume that 2a + b < 2. Then for x > 0

∫ x

0
u(t)(sin t)−(a

b
+1) · (tan t/2)1/bdt =

∫ x

0
v(t)(t)−(a

b
+1) · (t/)1/bdt,

where v(t) = u(t)(sin t)−(a
b
+1) · (tan t/2)1/b(t)(

a
b
+1) · (t)−1/b, so,

|
∫ x

0
u(t)(sin t)−(a

b
+1) · (tan t/2)1/bdt| ≤

√
b

2− 2a− b
· x 2−2a−b

2b · (
∫ x

0
|v(t)|2dt

)1/2
.
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Thus, the first summand (if c 6= 0) for y(x) has the order x
a−1

b and the second one has the order
x−1/2α(x) with lim

x→0
α(x) = 0. Since y(x) ∈ L2, c = 0. The same reasoning shows that c1 = 0.

Thus,

y(x) =
1
b
(sin |x|)a/b · (cot |x|/2)1/b

∫ x

0
u(t)(sin |t|)−a

b · (sin t)−1 · (tan |t|/2)1/bdt. (1.13)

In particular, for u(x) ≡ 1 we have

y0(x) : =
1
b
(sin |x|)a/b · (cot |x|/2)1/b

∫ x

0
(sin |t|)−a

b · (sin t)−1 · (tan |t|/2)1/bdt.

Some elementary estimations show that there are finite limits lim
x→0

y0(x), lim
x→−π

y0(x) and lim
x→π

y0(x)

with lim
x→−π

y0(x) = lim
x→π

y0(x). Let us show these relations. First, for t > 0 we define w(t) : =
(

sin t
t

)−a
b
−1 · ( tan(t/2)

t

)1/b. Then lim
t→+0

w(t) = (1/2)1/b. Moreover, for x > 0

y0(x) : =
1
b
(sinx)a/b · (cotx/2)1/b

∫ x

0
w(t)t−

a
b
−1+1/bdt,

so
y0(x) =

1
b
(sinx)a/b · (cotx/2)1/b b

1− a
w(ξx)(x)−

a
b
+1/b,

where ξx ∈ (0, x). The latter yields y(0) : = lim
x→+0

y(x) = 1
1−a . Second, for t < π we define

w+(t) : =
(

sin t
π−t

)−a
b
−1 · ( (π−t)

2 · tan(t/2)
)1/b. Then lim

t→+π−0
w+(t) = 1 and for z(x) : = (1 + a) ·

y0(x) · ( sin(x/2)
) 2

b we have

z(x) =
1 + a

b
(sinx)

a+1
b ·

∫ x

0
w+(t)(π − t)−

a
b
−1−1/bdt.

Let us fix ε > 0 Then there is δ > 0 such that 1 − ε < w+(x) < 1 + ε for every x ∈ (π − δ, π).
Next, for the same x

z(x) =
1 + a

b
(sinx)

a+1
b · (

∫ π−δ

0
w+(t)(π − t)−

a
b
−1−1/bdt+

∫ x

π−δ
w+(t)(π − t)−

a
b
−1−1/bdt

)
.

Since ∫ x

π−δ
w+(t)(π − t)−

a
b
−1−1/bdt

)
=

b

1 + a
w(νx,δ)

(
(π − x)−

1+a
b − δ−

1+a
b

)

with νx,δ ∈ (π − δ, π),

b

1 + a
(1− ε)

(
(π − x)−

1+a
b − δ−

1+a
b

) ≤
∫ x

π−δ
w+(t)(π − t)−

a
b
−1−1/bdt

) ≤

b

1 + a
(1 + ε)

(
(π − x)−

1+a
b − δ−

1+a
b

)
.

Moreover, for fixed δ

lim
t→+π−0

1 + a

b
(sinx)

a+1
b ·

∫ π−δ

0
w+(t)(π − t)−

a
b
−1−1/bdt = 0
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and
lim

t→+π−0
(sinx)

a+1
b · w(νx,δ)δ−

1+a
b = 0,

so the equality lim
x→π

y0(x) = 1
1+a is practically evident. Note also that y0(x) is even.

Thus, the function y0(x) is continuous on [−π, π] and satisfies the periodic conditions.
Now let u(x) = c +

∫ x
0 φ(t)dt, where c = const and φ(x) ∈ L2. Then for x > 0:

| ∫ x
0 φ(t)dt| ≤ x1/2

( ∫ x
0 |φ(t)|2)1/2. The latter estimation and (1.13) yield lim

x→0
y(x) = c · y0(0). The

same function can be re-written as following u(x) = c+ +
∫ x
π φ(t)dt or u(x) = c− +

∫ x
−π φ(t)dt.

Then the estimations | ∫ x
π φ(t)dt| ≤ (π−x)1/2

(−∫ x
π |φ(t)|2)1/2, x ∈ (o, π) and | ∫ x

−π φ(t)dt| ≤ (π+

x)1/2
( ∫ x

−π |φ(t)|2)1/2, x ∈ (−π, o) together with Representation (1.13) yield lim
x→π

y(x) = c+ ·y0(π)

and lim
x→−π

y(x) = c− ·y0(−π). Thus, y(x) satisfies the periodic condition if and only u(x) satisfies.
The latter yields the equality

L = SM . (1.14)

Moreover, we have shown that for every u(x) = c +
∫ x
0 φ(t)dt with φ(x) ∈ L2 there is absolutely

continuous on [−π, π] function y(x), such that (My)(x) = u(x), so R(M) is dense in L2 or,
equivalently, Ker(M∗) = {0}.

Note, that M is boundedly invertible. Indeed, M = D + iC, where C : L2 7→ L2,

(Cy)(x) : = i
{ b

2
cosx y(x)− b (sinx · y(x))′

}
, D(C) = D(M)

and D : L2 7→ L2,

(Dy)(x) : =
(
1− (a +

b

2
) cos x

)
y(x).

Since D is bounded, D(C) = {y(x) | y(x), (Cy)(x) ∈ L2} and a similar reasoning shows that
D(C) = D(A). Thus, if y(x), z(x) ∈ D(C), then for y(x) and z(x) Conditions (1.7) and (1.10)
hold true, so

lim
ε↘0

sin(π − ε)y(π − ε)z(π − ε) = lim
ε↘0

sin(−π + ε)y(−π + ε)z(−π + ε) = 0.

Since C∗ is defined by the same differential expression as C, the above equalities show that
D(C∗) = D(A). Thus, C is self-adjoint. Moreover, D is positive and boundedly invertible, so the
problem of invertibility of M is equivalent to the problem of regularity of non-real numbers for a
self-adjoint operator (for a more detail reasoning see, for instance, [7]).

Now let us prove that L is closed. The operator S restricted to the subspace L1 ⊂ L2 of
functions orthogonal to constants has a bounded inverse. Let us find M−1(L1). If (My)(x) ∈
L1, then

∫ π
−π(My)(x)d x = 0, but

∫ π
−π(y(x) sinx)′d x = 0, so y(x) ∈ M−1(L1) if and only if

y(x) ∈ D(M) and
∫ π
−π

(
1 − (a + b) cos x

)
y(x)d x = 0. Let L2 : =

{(
1 − (a + b) cosx

)}⊥
. Since

for y0(x) we have 2π =
∫ π
−π(My0)(x)d x =

∫ π
−π y0(x)

(
1 − (a + b) cos x

)
d x, y0(x) 6∈ L2 and

L2 = L2+̇{µ · y0(x)}µ∈C. Now let a sequence {yk(x)} be such that yk(x) → y(x) and zk(x) =
(Lyk)(x) → z(x). Then (Myk)(x) = vk(x) + ck, where vk(x) = ((S|L1)

−1z)(x), ck = const,
k = 1, 2, . . . . Since (S|L1)

−1 is bounded, the sequence {vk(x)} has a limite v(x). In turn, in
virtue of similar reasons the sequence wk(x) = (M−1vk)(x) also has a limite. Simultaneously
yk(x) = (M−1(vk + Ck))(x) = wk(x) + cky0(x). Thus, the sequence {ck} has a limite. The rest is
straightforward.

2
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Corollary 1. If the parameters a and b satisfy the inequality 2a + b < 2, then the set D(L) is
the linear sub-manifold H of the Sobolev space H1(−π, π):

D(L) = H : f ∈ H1(−π, π), f(π) = f(−π, ) sin(x)f ′ ∈ H1(−π, π)

and is a Hilbert space with the norm defined as:

||f ||2 = ||f ||2H1 + || sin(x)f ′(x)||2H1 .

The reasoning of this corollary is the same as the reasoning of the corresponding proposition in
[7].

For the next step we need the following simple remark.

Lemma 1. Let H be a Hilbert space, x1 , x2 ∈ H, (x1, x2) 6= 0. Let H1 : = {x1}⊥, H2 : = {x2}⊥.
Let P1 and P2 be ortho-projections onto the subspaces H1 and H2 respectively. Then P2|H1 is one-
to-one mapping onto H2.

Proof. Let H3 : = H1 ∩ H2. Without loss of generality we can assume that ‖x1‖ = ‖x2‖ = 1,
(x1, x2) = α > 0. Then H1 = {µ · (x2−α · x1)}µ∈C⊕H3, H2 = {µ · (x1−α · x2)}µ∈C⊕H3. Since
P2|H3 = IH3 and P2(x2 − α · x1) = α · (x1 − α · x2), the rest is evident.

2

Theorem 2. If the parameters a and b satisfy the inequality 2a + b < 2, then the resolvent of L
is compact of the Hilbert-Schmidt type.

Proof. Let L0 ⊂ L2 be the subspace of constants, L1 : = L⊥0 . Since L0 ⊂ D(L) and R(L) = L1,
the operator L has the following matrix representation

L =
[

0 0
L10 L11

]

with respect to the decomposition L2 = L0⊕L1, where the operator L10: 1 → a · sinx is bounded
and D(L11) = {f(x) |f ∈ H1(−π, π), f(π) = f(−π), sin(x)f ′(x) ∈ H1(−π, π),

∫ π
−π f(x)dx =

0}. Let us analyze the properties of L11. From Theorem 1 we have L11 = SM |L1 . Let L2 =
M(D(M)∩L1), y0(x) = (M−11)(x), z0(x) = ((M∗)−11)(x). Then for y(x) ∈ D(M)∩L1 we have
0 = (y, 1) = (y, M∗z0) = (My, z0), so L2 = {z0}⊥. From the other hand, (1, z0) = (My0, z0) =
(y0,M

∗z0) = (y0, 1). Since (see the proof of Theorem 1) (y0, 1) 6= 0, the pair {1, z0} is under the
conditions of Lemma 1. Let P1 be the ortho-projection onto L1. Then L11 = S · (P1|L2) · (M |L1),
so L−1

11 = (M−1|L2) · (P1|L1)
−1 · (S|L1)

−1. Thus, L−1
11 is an operator of the Hilbert-Schmidt type.

Since

Rλ(L) =
[

Rλ(0) 0
1
λRλ(L11)L10 Rλ(L11)

]
,

the rest is straightforward.
2
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УДК 517.984

О ФАКТОРИЗАЦИИ ОДНОГО ДИФФЕРЕНЦИАЛЬНОГО
ОПЕРАТОРА, ВОЗНИКАЮЩЕГО В ГИДРОДИНАМИКЕ
М.В. Чугунова, В.А. Штраус

Спектральные свойства линейных операторов играют важную роль в анализе
устойчивости динамических систем. В заметке исследуются свойства несамосопряжен-
ного дифференциального оператора второго порядка, связанного с исследованием про-
блемы устойчивости стационарного динамического состояния тонкой пленки, образо-
ванной вязкой ньютоновской жидкостью и расположенной на внутренней поверхности
вращающегося цилиндра, при наличии гравитационного поля. Линеаризация по ма-
лому параметру (отношению толщины потока к размеру цилиндра) в этом случае по-
рождает дифференциальный оператор с областью определения, вложенной в прямую
сумму двух подпространств, натянутых, соответственно, на базисы {einx} и {e−inx}
(n > 0), причем указанные подпространства не являются инвариантными по отноше-
нию к оператору, и одномерного подпространства констант. Доказывается, что этот
оператор допускает представление в виде произведения двух дифференциальных опе-
раторов первого порядка. Полученное представление используется для доказательства
компактности резольвенты исследуемого оператора и непосредственного описания его
области определения.

Ключевые слова: спектральный анализ дифференциального оператора, фактори-
зация, гидродинамика, прямое/обратное уравнение теплопроводности.
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