Уравнения осколкова на геометрических графах как математическая модель дорожного движения
Abstract
В настоящее время возникла необходимость создания адекватной математической модели, описывающей дорожное движение. Математическая теория управления транспортными потоками сейчас активно развивается в работах школы А.Б. Куржанского, где транспортный поток уподобляется несжимаемой жидкости, и, как следствие, рассматриваются гидродинамические модели, основанные, например, на системе Навье - Стокса. В отличие от упомянутого направления авторы этой статьи помимо несомненных свойств транспортного потока, рассматриваемых ранее, таких как вязкость и несжимаемость, предлагают учитывать еще и его упругость. Действительно, при включении запрещающего сигнала светофора транспортные средства мгновенно не останавливаются, а плавно снижают скорость вплоть до остановки, накапливаясь перед стоп-линией. Аналогично при включении разрешающего сигнала светофора транспортные средства не стартуют мгновенно и одновременно, а трогаются с места друг за другом, постепенно набирая скорость. Тем самым транспортный поток проявляет эффект ретардации, свойственный вязкоупругим несжимаемым жидкостям, которые описываются системой уравнений Осколкова.В первой части статьи обосновывается линейная математическая модель, т.е. конвективные члены в уравнениях Осколкова отсутствуют. В контексте модели это означает, что перестроениями транспортных средств можно пренебречь. Во второй части модель исследуется на качественном уровне, т.е. формулируется теорема о существовании единственного решения поставленной задачи и приводятся наброски ее доказательства.
Issue
Section
Short Notes