Трехмерная симметричная задача протекания для уравнений Навье - Стокса

Authors

  • В. В. Пухначев Author

Abstract

В работе Ж. Лерэ (1933) доказана рассуждением от противного разрешимость краевой задачи для уравнений Навье - Стокса при дополнительном условии нулевого потока через каждую связную компоненту границы области течения. При этом же условии Э. Хопф (1941) получил априорную оценку решения. Остается открытым вопрос: имеет ли эта задача решение при выполнении лишь необходимого условия суммарного нулевого потока? Ранее разрешимость трехмерной задачи протекания установлена при малых значениях потоков (Х. Фуджита, 1961; Р. Финн, 1961), либо при условии близости течения к потенциальному (Х. Фуджита и Х. Моримото, 1995). В серии работ М.В. Коробкова, К. Пилецкаса и Р. Руссо (2011 - 2015) положительный ответ на этот вопрос получен для плоских и осесимметричных течений без ограничений на величину потоков. В данной работе задача протекания для уравнений Навье - Стокса рассматривается в трехмерной области типа сферического слоя. Получена априорная оценка решения этой задачи при следующих дополнительных условиях: течение имеет плоскость симметрии; поток через внутреннюю границу области положителен. Из этой оценки вытекает разрешимость указанной задачи.

Issue

Section

Mathematical Modelling