A Numerical Method for Solving Inverse Problems Generated by the Perturbed Self-Adjoint Operators

Authors

  • Sergey I. Kadchenko Author

Abstract

На основе методов регуляризованных следов и Бубнова-Галеркина разработан новый метод решения обратных задач по спектральным характеристикам возмущенных самосопряженных операторов. Найдены простые формулы для вычисления собственных значений дискретных операторов, без нахождения корней соответствующего векового уравнения. Вычисление собственных значений возмущенного самосопряженного оператора можно начинать с любого их номера независимо от того, известны ли собственные значения с предыдущими номерами или нет. Численные расчеты нахождения собственных значений для оператора Штурма-Лиувилля показывают, что предлагаемые формулы при больших номерах собственных значений дают результат точнее, чем метод Бубнова-Галеркина. Кроме того, по найденным формулам можно вычислять собственные значения возмущенного самосопряженного оператора с очень большим номером, когда применение метода Бубнова-Галеркина становится затруднительным. Этот факт можно, например, использовать в задачах гидродинамической теории устойчивости, если необходимо находить знаки действительной или мнимой частей собственных значений этих задач с большими номерами.
Получено интегральное уравнение Фредгольма первого рода, позволяющее восстанавливать значения возмущающего оператора в узловых точках дискретизации.
Метод был проверен на обратных задачах для оператора Штурма-Лиувилля. Результаты многочисленных расчетов показали его вычислительную эффективность.

Published

2013-11-01

Issue

Section

Mathematical Modelling