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POPULATION MODELS WITH PROJECTION MATRIX WITH SOME
NEGATIVE ENTRIES � A SOLUTION TO THE NATCHEZ PARADOX
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In this note we consider the population the model of which, derived on the basis

of ethnographical accounts, includes a projection matrix with both positive and negative

entries. Interpreting the eventually negative trajectories as representing the collapse of the

population, we use some classical tools from convex analysis to determine a cone containing

the initial conditions that give rise to the persistence of both the population and its social

structure.
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Introduction

Let us consider a population divided into a �nite number of classes with respect to some
attribute, such as age, status, or geographical location. The state of the population at any
time t can be described by the vector x(t) = (x1(t), . . . , xn(t)), where xi(t), i = 1, . . . , n,
gives the number of individuals with attribute i at time t. If we observe this population
in discrete time then, in the linear case, its evolution can be modelled by

x(k + 1) = Ax(k), k ≥ 0,

x(0) = x̊,

where x̊ is the initial state of the population and the matrix A, often called the projection
matrix, [1, Chapter 1], describes the transfers between the classes and changes in them
between subsequent observations. It is commonly assumed in population theory that if a
model is correctly formulated, then positive initial conditions should give a positive (or at
least nonnegative) population at any later time. It is well-known, see e.g. [2, Section 6.1],
that this is equivalent to all entries of A being nonnegative. However, it sometimes
happens that reasonable assumptions on the population lead to projection matrices with
entries of varying sign and this results in at least some trajectories eventually becoming
negative. Nevertheless, it can happen that some initial conditions still give nonnegative
trajectories. If we interpret an eventually negative trajectory as describing a collapse of
the population (the population evolves soundly for some time but then it reaches a stage
after which any further evolution within the framework of the model becomes impossible),
then the initial conditions generating positive trajectories give rise to unbroken evolution
of the population. The set of initial conditions (possibly empty) generating nonnegative
trajectories will be called the viability set � of course any point on a nonnegative trajectory
belongs to the viability set. Since it is determined by the entries of A, that typically re�ect
the environmental constraints, the viability set describes the constraints imposed by the
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environment on the structure of the initial population that ensure the survival of the
population.

By linearity, if x̊ and ẙ generate positive trajectories, then so does αx̊ + βẙ for any
α, β ≥ 0. Hence the viability set is a convex cone that we shall call the viability cone.
Due to this, tools from convex analysis can be successfully employed to determine the
viability cone for any A. In this paper we demonstrate this link between convex analysis,
the Perron�Frobenius theory and population theory using the Natchez civilisation as an
example.

We note that several Perron�Frobenius like theories have been developed for matrices
with some negative entries, see e.g. [3] or [4] and references therein. Our model, however,
does not satisfy the assumption of the former and thus we use the ideas of [4].

1. The Model

Almost every society has more or less explicit class, or cast, system. In most societies
the membership in a particular class is largely hereditary, through endogamy; that is,
marrying within one's own class. This has been the cause of many hereditary diseases,
especially among aristocracy, where the available pool of potential spouses always has
been limited. A relatively recent example is haemophilia su�ered by many descendants
of Queen Victoria. Despite this, the desire to provide for own children is so prevalent
that few societies have decided to limit endogamy by practicing an open class system to
prevent stagnation of the structure. An interesting example is o�ered by the civilization
of Natchez.

Natchez were Native Americans who lived in the lower Mississippi in North America.
Possibly the earliest European account of the Natchez is due to Hernando de Soto, whose
expedition encountered a powerful chiefdom on the eastern bank of the Mississippi River
in 1542 but was attacked by them and chased away. Most information about the Natchez
civilisation has come from French colonists and missionaries who established contacts
with them in the 17th century. The civilisation ceased to exist after the so-called Natchez
revolt in 1729�1731, that followed three earlier wars with French; then Natchez were �nally
defeated and then dispersed or were enslaved.

French missionaries, explorers and colonial administrators recorded basic features of
the Natchez's social life. Their accounts were used by J. R. Swanton to write the �rst
modern reconstruction of the Natchez society in 1911, see [5]. It turned out that Natchez
had created a striking example of a strati�ed social system of open classes based on
exogamous marriages so that the power was passed between people born to di�erent social
classes. The society was divided into two main classes � Nobility and Commoners (in early
literature also called Stinkards). The Nobility was further divided into subclasses (casts):
Suns, Nobles and Honoured. A member of Nobility only could marry a Commoner (but
Commoners could marry within its own class). The inheritance of the class membership
was matrilineal, with the exception that the children of Sun fathers were Noble, and the
children of Noble fathers were Honoured. This description has created a lot of controversy
due to the so-called Natchez paradox � as observed in [6], in this model the number
of Nobles and Honoured would burgeon and the Commoner class would be depleted in
successive generations until in the society there would be insu�cient number of Commoners
to provide spouses for the Nobility. We shall provide a quantitative illustration of this
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paradox in the next section. Since the Natchez civilization existed for several hundred
years, according to [6], the Swanton model is biologically impossible. There were several
attempts to explain this paradox, ranging from questioning the class inheritance rules to
proposing di�erent reproduction rates in each class, see [7, 8]. A �rst mathematical account
of the latter approach can be found in [2, pp. 106�108, 174�178] and in this paper we shall
propose a more general look at the problem along the lines sketched in op.cit.

2. The Natchez Paradox

Following [2, pp. 174�178], we simplify the analysis by merging the Nobles and the
Honoured into one class � say the Nobles. First, we summarize the rules for status
inheritance in the table below.

Table 1

Possible marriages in the Natchez population and the status of their o�spring

Mother \ Father Sun Noble Commoner
Sun Sun
Noble Noble

Commoner Noble Commoner Commoner

The following assumptions were commonly adopted in the literature.
1. There is the same number of males and females in each class in each generation and we
only track males.
2. Each person marries only once and the spouse is from the same generation.
3. Each pair has exactly one son and one daughter.

Let the population (of males) in the kth generation be described by

x(k) = (x1(k), x2(k), x3(k))

with the classes numbered as follows: 1 � Sun, 2 � Noble, 3 � Commoner.
Since a Sun son only can be born to a Sun mother and there is no other way to become

a Sun, using the fact that the number of female Suns equals the number of male Suns we
can write

x1(k + 1) = x1(k).

A Noble son only can be born to Sun father or to Noble mother hence, using the parity
of males and females in the Noble class, we get

x2(k + 1) = x1(k) + x2(k).

Finally, the number of male o�spring in the Commoner class is equal to the number of
Commoner males who are not married to the females from the Nobility plus the number
of sons of Commoner mothers and Noble fathers (remember that the son of a Commoner
father and a Noble mother is a Noble but then the son of a Commoner mother and a Noble
father is a Commoner). Hence

x3(k + 1) = −x1(k)− x2(k) + x2(k) + x3(k) = −x1(k) + x3(k).
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Writing the model in matrix form, we have

x(k + 1) = Ax(k) = (I+ B)x(k), x(0) = x̊, (1)

where

A =

 1 0 0
1 1 0

−1 0 1

 , B =

 0 0 0
1 0 0

−1 0 0

 ,

I is the identity matrix and x̊ is the initial structure of the population.
We immediately see that this is not a correct population model in the conventional

sense since the transition matrix A does not have positive entries and thus not all solutions
(x(k))k≥0 of (1) with nonnegative x̊ are nonnegative, see e.g. [2, Section 6.1]. In this case
we can give a more detailed description. We see that B2 = 0, hence Ak = I+ kB; that is,

Ak =

 1 0 0
k 1 0

−k 0 1

 .

If x1(0) = 0, the structure of the population does not change since

x(k) = (0, x2(0), x3(0)).

If, however, originally we have some members of the Sun class, then the size of the
Commoner class becomes negative in �nite time. Indeed x3(k) = −kx1(0) + x3(0) and
thus x1(0) > 0 yields x3(k) < 0 for k > x3(0)/x1(0). As discussed in Introduction, this
can be interpreted as the dropping of the number of Commoners below the level allowing
for all Nobles and Suns to marry before time k. This occurs for any initial condition with
x̊1 > 0, hence the civilisation in the described form cannot survive as Suns and Nobles
have to marry Commoners. Since, however, according to the historical records, the Natchez
civilisation with its social structure survived for several hundred years, the model in the
presented form cannot be correct. As we noted in Introduction, several explanations have
been presented to explain the paradox. We shall consider the suggestion of [7] that there
were di�erent birth rates in di�erent casts.

3. The Luenberger Solution

To our knowledge, the �rst attempt to mathematically analyse the Natchez population
was done in [2]. The author followed the assumption discussed in [7] and asked the question
whether it was possible �nd birth rates for each combination of parents in the Natchez
community that would result in its positive stable class distribution? Consider the the
intermarriage/fecundity scheme presented in Table 2, where αi > 0, i = 1, . . . , 5, is the
average number of male o�spring from such a marriage.

Modelling as before again leads to

x(k + 1) = Ax(k),

where this time

A =

 α1 0 0
α2 α3 0

−α5 α4 − α5 α5

 . (2)
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Table 2

Intermarriage scheme in a simpli�ed Natchez-like community with di�erential birth rates

Mother \ Father Sun Noble Commoner
Sun Sun α1

Noble Noble α3

Commoner Noble α2 Commoner α4 Commoner α5

Luenberger's idea was to try to �nd out under what conditions there exists a positive
eigenvector e of A belonging to the largest positive eigenvalue λmax. This would show that
in the long run the structure of the population stabilizes with each class remaining strictly
positive,

x(k) = Akx̊ ≈ λk
max(e

∗, x̊)e, for large k, (3)

provided (e∗, x̊) ̸= 0, where by (·, ·) we understand the standard dot product in Rn and
e∗ is the (normalized) left eigenvector of A.

The weakness of this solution is that the existence of a positive eigenvector belonging to
the dominant eigenvalue does not ensure that the population will reach this state through
strictly positive iterations. This problem is addressed in the next section.

Let us return to Luenberger's solution. Since the matrix A is triangular, its eigenvalues
are given by α1, α3 and α5. If α5 is the dominant eigenvalue, then the long term structure
is given by e = (0, 0, 1); that is, the population will only consists of Commoners. While it
is certainly possible, we are interested in the survival of the community with the original
structure, which clearly is not possible in this case. A similar outcome is obtained if
we assume that α3 is the dominant eigenvalue. Then the stable population structure is

e =
(
0, 1, α4−α5

α3−α5

)
, provided α4 > α5. Finally, if α1 is the dominant eigenvalue, then the

stable population structure is given by

e =

(
1,

α2

α1 − α3

,
1

α1 − α5

(
−α5 + α2

α4 − α5

α1 − α3

))
(4)

and it is positive if and only if

α2(α4 − α5) > α5(α1 − α3). (5)

To complete our considerations, we must show that in the stable structure we have
su�ciently many Commoners for the Suns and Nobles to marry; that is, that the
coordinates of e satisfy

x3 ≥ x1 + x2. (6)

Substituting here the formulae for x2 and x3, which were derived earlier, we obtain

1

α1 − α5

(
−α5 + α2

α4 − α5

α1 − α3

)
≥ 1 +

α2

(α1 − α3)
, (7)

that yields the inequality [2, Equations (5�81)],

α4 − α5

α1 − α5

− α5(α1 − α3)

α2(α1 − α5)
− α1 − α3

α2

− 1 ≥ 0. (8)
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This inequality will be satis�ed if α4 is su�ciently large. For instance, the choice α1 =
1.1, α2 = 1.0, α3 = 1.0, α4 = 1.3, α5 = 0.9 works, giving the stable population distribution
as e = (1, 10, 15.5). In general, if the fecundity in marriages of Commoner mothers and
Noble fathers should be su�ciently large, then we have su�ciently many Commoners in
the stable population distribution.

4. Full Solution

As we have mentioned earlier, the provided analysis is not complete as it only shows
that there is a structure of the society which can persist in a stable way. However, we do
not know whether any positive initial population satisfying (6) will give rise to a positive
population satisfying (6) in each generation, that will eventually stabilize at the structure
determined by the eigenvector found above.

Fortunately, the problem allows for a more detailed solution which con�rms the results
obtained by the analysis of the dominant eigenvalue and the corresponding eigenvector. To
avoid dealing with several subcases, here we assume that α1 > max{α3, α5} and α3 ̸= α5.

For the solution with x̊1 > 0 we have

x1(k) = αk
1x̊1 > 0, x2(k) = αk

3x̊2 + α2x̊1
αk
1 − αk

3

α1 − α3

> 0.

Further

x3(k) = αk
5x̊3 +

αk
3 − αk

5

α3 − α5

(α4 − α5)

(
x̊2 − x̊1

α2

α1 − α3

)
+

+
αk
1 − αk

5

α1 − α5

(
α2(α4 − α5)

α1 − α3

− α5

)
x̊1.

(9)

Hence x3(k) is nonnegative provided (5) is satis�ed and

x̊1

x̊2

≤ α1 − α3

α2

. (10)

In other words, for the solution to remain positive, the ratio of the initial population of Suns
and Nobles should be smaller than the ratio of these populations in the stable population
distribution vector. Furthermore, for the population structure to persist, there must be
enough Commoners for the Nobility to marry, so that we need (x1(k), x2(k), x3(k)) to
satisfy (6) for any k. In principle, it is possible to prove it from (9) but it requires lengthy
calculation. There is, however, a smarter and systematic way to do this that uses the
concept of cross-positive matrices [4, 9].

Let us recall the de�nition of a cone used in the results below. We say that C ⊂ Rn is a
cone if C is nonempty, closed and satis�es C +C ⊂ C, αC ⊂ C for all α ≥ 0, C−C = Rn

and C∩ (−C) = {0}. Our problem can be re-formulated as follows: �nd (α1, . . . , α5) ∈ R5
+

such that the cone in R3
+, determined by (10) and (6); that is

C =

{
(x1, x2, x3); x1 ≥ 0,− α2

α1 − α3

x1 + x2 ≥ 0, x3 ≥ x1 + x2

}
, (11)

remains invariant under A, AC ⊆ C, where A is de�ned by (2). Cone C, see Figure, is the
viability cone for the Natchez population, as de�ned in Introduction.
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The viability cone C

We need the concept of a polar set.

De�nition 1. The polar set S∗ of a non-empty set S in Rn is de�ned to be

S∗ = {z ∈ Rn; (z,y) ≥ 0 for all y ∈ S}.

It follows that if C is a cone in Rn, then so is C∗ [10, Chapter I �4]. Furthermore,
C∗∗ = C (see [10, Corollary to Theorem 3 of Chapter I] or [4, Lemma 2]). Then we have

Proposition 1. [4, Remark 1] Let C be a cone in Rn and A be an n× n matrix. Then

AC ⊆ C if and only if (z,Ay) ≥ 0 for all y ∈ C, z ∈ C∗.

We recall some necessary terminology. Let a1, . . . ,ar and b1, . . . , bs be some vectors
in Rn. We say that a cone C ⊂ Rn is polyhedral if

C = {x; (aj,x) ≥ 0, j = 1, . . . , r} (12)

and that it is �nitely generated if

C = {x; x =
s∑

j=1

µjbj, µj ≥ 0, j = 1, . . . , s} =: cone({b1, . . . , br}). (13)

We observe that if C is polyhedral then, from the de�nition of the cone, Span{aj}j=1,...,r =
Rn. Indeed, otherwise there would be 0 ̸= x ⊥ Span{aj}j=1,...,r. Then, by de�nition, x ∈ C
but, since (aj,x) = 0, x ∈ C ∩ (−C) and hence x = 0.

The main result of the paper is

Theorem 1. Let αi, i = 1, . . . , 5, be positive, q := max{α3, α5}/α1 < 1 and

α4 ≥
α1(α1 − α3 + α2)

α2

. (14)

Then the cone C de�ned by (11) is invariant under A and, for x̊ ∈ C with x̊1 > 0,

Akx̊

α5
1

= x̊1

(
1,

α2

α1 − α3

,
1

α1 − α5

(
−α5 + α2

α4 − α5

α1 − α3

))
+O(qk). (15)
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Proof. It is easy to see that

C = {x; (a1,x) ≥ 0, (a2,x) ≥ 0, (a3, x) ≥ 0},

where

a1 = (1, 0, 0), a2 =

(
− α2

α1 − α3

, 1, 0

)
, a3 = (−1,−1, 1).

From the Minkowski�Weyl theorem, [11, Theorem 19.1], a cone is polyhedral if and only
if it is �nitely generated with the vectors {bi}i=1,...,s of (13) being the extreme rays
(directions), op.cit. In our case, since Span{aj}j=1,2,3 = R3 and {aj}j=1,2,3 are linearly
independent, it is easy to see that a bi-orthogonal system of vectors {bi}i=1,2,3; that is,
satisfying (aj, bi) = δij, i, j = 1, 2, 3, (the Kronecker delta) can be taken as generating C.
Indeed, let

x′ =
3∑

i=1

(ai,x)bi.

Then

(aj,x− x′) = (aj,x)−
3∑

i=1

(ai,x)(aj, bi) = 0, j = 1, 2, 3,

and, since Span{aj}j=1,2,3 = R3, x = x′. Thus, if x ∈ C, it can be expressed as a
nonnegative linear combination of {bi}i=1,2,3. Conversely, if

x =
3∑

i=1

µibi, µi ≥ 0, i = 1, 2, 3,

then (aj,x) = µj ≥ 0 and hence x ∈ C. Since we are in R3, such vectors are the normalized
cross products

b3 = a1 × a2 = (0, 0, 1), b2 = a3 × a1 = (0, 1, 1),

b1 = a2 × a3 =

(
1,

α2

α1 − α3

, 1 +
α2

α1 − α3

)
,

thus

C = cone

({(
1,

α2

α1 − α3

, 1 +
α2

α1 − α3

)
, (0, 1, 1) , (0, 0, 1)

})
.

To �nd C∗, we use the Farkas lemma, [11, Corollary 22.3.1] that states that if C =
cone({a1, . . . ,ar}), then

C∗ = {x; (aj,x) ≥ 0, j = 1, . . . , r}

and
{x; (aj,x) ≥ 0, j = 1, . . . , r}∗ = cone({a1, . . . ,ar}).

Thus,

C∗ = {y; (b1,y) ≥ 0, (b2,y) ≥ 0, (b3,y) ≥ 0} = {x; (a1,x) ≥ 0, (a2,x) ≥ 0, (a3,x) ≥ 0}∗

= cone({a1,a2,a3}).
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We need to prove (y,Ax) ≥ 0 for all y ∈ C∗,x ∈ C. However, it is clear that it su�ces to
check

(ai,Abj) ≥ 0, i, j = 1, 2, 3.

This gives 9 inequalities to check. First, we have

Ab1 =
(
α1, α2 +

α2α3

α1 − α3

,
α2α4

α1 − α3

)
, Ab2 = (0, α3, α4), Ab3 = (0, 0, α5).

Hence

(a1,Ab1) = α1, (a1,Ab2) = 0, (a1,Ab3) = 0,

(a2,Ab1) = 0, (a2,Ab2) = α3, (a2,Ab2) = 0,

(a3,Ab1) =
α1(−α1 + α3 − α2) + α2α4

α1 − α3

, (a3,Ab2) = α4 − α3, (a2,Ab2) = α5

resulting in

α4 ≥ α3, (16)

α4 ≥
α1(α1 − α3 + α2)

α2

. (17)

However, since α1 > α3, (17) yields

α4 ≥
α1(α1 − α3 + α2)

α2

>
α3(α3 − α3 + α2)

α2

= α3

so that (16) is super�uous.
Then (15) follows from (4) and (3) as e∗ = (1, 0, 0) is the normalized left eigenvector

belonging to α1.

2

Remark 1. We observe that (14) seems not to be related to (5) and (8). Though the
latter can be inferred from the former indirectly, since C is closed and e can be obtained
as the limit of iterations of (A/α5)

kx̊ as k → ∞ with x̊ ∈ C, we also provide a direct
proof. Since α1 > α5, from (17) we have

α2α4 > α5(α1 − α3 + α2)

so that (17) yields (5). Further,

α1 − α3 + α2 = (α1 − α3)

(
1 +

α2

α1 − α3

)
hence, using twice (17),

0 < 1 +
α2

α1 − α3

≤ α2α4

α1(α1 − α3)
=

(α1 − α5)α2α4

α1(α1 − α5)(α1 − α3)
=

=
1

(α1 − α5)(α1 − α3)

(
α2α4 − α5

α2α4

α1

)
≤ α2α4 − α5(α1 − α3 + α2)

(α1 − α5)(α1 − α3)
.
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Thus (8); that is,

1

α1 − α5

(
−α5 + α2

α4 − α5

α1 − α3

)
≥ 1 +

α2

α1 − α3

≥ 0

also is satis�ed.
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ÌÎÄÅËÈ ÏÎÏÓËßÖÈÈ Ñ ÏÐÎÅÊÖÈÎÍÍÎÉ ÌÀÒÐÈÖÅÉ
Ñ ÍÅÊÎÒÎÐÛÌÈ ÎÒÐÈÖÀÒÅËÜÍÛÌÈ ÇÍÀ×ÅÍÈßÌÈ �
ÐÅØÅÍÈÅ ÏÀÐÀÄÎÊÑÀ ÍÀÒ×ÅÇÎÂ

ß. Áàíàñÿê, Óíèâåðñèòåò Ïðåòîðèè, ã. Ïðåòîðèÿ, Þæíî-Àôðèêàíñêàÿ Ðåñïóáëèêà

Â ñòàòüå ìû ðàññìîòðèì ìîäåëü ïîïóëÿöèè, îñíîâàííóþ íà ýòíîãðàôè÷åñêèõ äàí-

íûõ, ïðîåêöèîííàÿ ìàòðèöà êîòîðîé ñîäåðæèò êàê ïîëîæèòåëüíûå, òàê è îòðèöàòåëü-

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2018. Ò. 11, � 3. Ñ. 18�28
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J. Banasiak

íûå ýëåìåíòû. Èíòåðïðåòèðóÿ îòðèöàòåëüíûå òðàåêòîðèè êàê ïðåäñòàâëÿþùèå, â êî-

íå÷íîì ñ÷åòå, êîëëàïñ íàñåëåíèÿ, ìû èñïîëüçóåì íåêîòîðûé êëàññè÷åñêèé àïïàðàò

âûïóêëîãî àíàëèçà äëÿ îïðåäåëåíèÿ êîíóñà, ñîäåðæàùåãî íà÷àëüíûå óñëîâèÿ, êîòî-

ðûå ïðèâîäÿò ê ñîõðàíåíèþ êàê íàñåëåíèÿ, òàê è åãî ñîöèàëüíîé ñòðóêòóðû.

Êëþ÷åâûå ñëîâà: òåîðèÿ ïîïóëÿöèè; öèâèëèçàöèÿ Íà÷åçîâ; âûïóêëûé êîíóñ; òåî-

ðèÿ Ïåððîíà � Ôðîáåíèóñà; êîíóñ æèçíåñïîñîáíîñòè.
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òåìàòèêè è ïðèêëàäíîé ìàòåìàòèêè, Óíèâåðñèòåò Ïðåòîðèè (ã. Ïðåòîðèÿ, Þæíî-
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