Numerical Solution of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernel

Authors

  • D. N. Sidorov Author
  • A. N. Tynda Author
  • I. R. Muftahov Author

Abstract

Integral equations are in the core of many mathematical models in physics, economics and ecology. Volterra integral equations of the first kind with jump discontinuous kernels play important role in such models and they are considered in this article. Regularization method and sufficient conditions for existence and uniqueness of the solution of such integral equations are derived. An efficient numerical method based on the mid-rectangular quadrature rule for these equations with jump discontinuous kernels is proposed. The accuracy of proposed numerical method is O(N −1 ). The model examples demonstrate efficiency of proposed method: errors, two mesh differences and orders of convergent

Author Biographies

  • D. N. Sidorov
    кандидат физико-математических наук, доцент кафедры≪Вычислительная техника≫
  • A. N. Tynda
     кандидат физико-математических наук, доцент кафедры≪Высшая и прикладная математика≫
  • I. R. Muftahov
      аспирант кафедры ≪Вычислительная техника≫

Issue

Section

Programming