ОЦЕНКА АДЕКВАТНОСТИ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССОВ В РАМКАХ РЕГРЕССИОННОГО АНАЛИЗА ДАННЫХ В ПАКЕТЕ MATHCAD
Аннотация
Рассмотрено применение методов оценки качества регрессионных моделей при изучении некоторых металлургических процессов. Это следующие модели: коэффициент R2, коэффициент корреляции, мультиколлинеарность, экстраполяция, временные системы, инженерное прогнозирование, полный факторный эксперимент. До сих пор значительная часть исследователей (специалисты в области не только экономических, но и технических наук) используют коэффициент R2 в качестве постоянной диагностической величины, в то время как корректировка данного коэффициента не приносит значительной пользы. Коэффициент корреляции представляет собой числовую характеристику, показывающую статистическую взаимосвязь двух или более случайных величин, не зависящих от их размерности. Это правило в равной мере относится к коэффициенту корреляции, полученному путем перемножения двух матрицстолбцов. Показан метод обработки данных при наличии в них мультиколлинеарности (интеркорреляции), а также способ ее устранения. Показаны недостатки использования метода экстраполяции в процессе математического моделировании. На основе конечных временных рядов разработан новый метод прогнозирования, названный методом «скользящей матрицы» и заключающийся в непрерывном обновлении коэффициентов уравнения регрессии путём удаления из матрицы строки с устаревшими данными и ввода новых строк с данными в прогнозируемой точке. Метод позволяет непрерывно избавляться от информационного «груза» в старых данных, так как старые данные (т. е. данные прошлого периода) несут в себе «устаревшую» информацию, которая может отрицательно повлиять на адекватность математической модели и позволяет сделать прогнозирование более корректным. Все расчеты математической модели производили с использованием программного продукта Mathcad.Опубликован
2020-11-26
Выпуск
Раздел
Металлургия чёрных, цветных и редких металлов