Интегральная модель и численный метод определения температуры при линейном теплопереносе
Аннотация
В статье рассмотрена задача измерения, связанная с проблемой определения температуры внутри объекта, подвергаемого внешнему тепловому воздействию. В каждой точке поверхности тепловое воздействие одинаково и изменяется только по времени. В этом случае задача измерения температуры имеет вид задачи теплопереноса в линейном объекте, один конец которого соответствует точке на поверхности тела, а второй – внутренней контрольной точке. Исходные данные в задаче формируются на основе температурных измерений вблизи поверхности объекта.
В данной работе задача теплопереноса сводится к интегральной модели с помощью прямого и обратного преобразования Лапласа. Полученное интегральное уравнение является уравнением Вольтерра I рода и характеризует прямую зависимость неизвестных температурных функций в контрольной точке от исходных данных. Для построения численного решения интегрального уравнения, устойчивого относительно погрешности исходных данных, в работе предложена вычислительная схема, основанная на регуляризующем подходе, в котором одним из параметров регуляризации является количество слагаемых в ядре.
С целью получения экспериментальных оценок погрешностей решений задачи измерения был проведен вычислительный эксперимент на основе имитационного моделирования. В ходе эксперимента определены значения температурных функций в контрольной точке объекта и на основании полученных граничных функций найдены значения температуры во внутренних точках объекта. Также в ходе эксперимента выполнен сравнительный анализ найденных температурных функций в контрольной точке с тестовыми значениями. Результаты вычислительного эксперимента приведены в работе и свидетельствуют о достаточной точности предложенного вычислительного метода определения температуры при линейном теплопереносе.