Разработка искусственной нейронной сети для прогнозирования прихватов колонн бурильных труб
Аннотация
Прихват колонны бурильных труб является одним из самых тяжелых видов аварий в бурении нефтяных и газовых скважин и оказывает существенное влияние на эффективность процесса бурения и стоимость скважины. Прогнозирование прихвата на стадии проектирования и в процессе бурения скважин позволяет минимизировать риск возникновения прихвата за счет выбора оптимального способа предупреждения для конкретных геолого-технических условий.
Статья посвящена разработке искусственной нейронной сети для прогнозирования прихвата колонны бурильных труб. Также приведен литературный обзор существующих методов прогнозирования прихватов. В качестве входных данных применяются важные и обобщающие факторы, влияющие на возникновение всех видов прихватов, что позволяет прогнозировать все виды прихватов колонн бурильных труб. С целью повышения восприимчивости входных данных к обучению нейронной сети производится преобразование элементов данных на субэлементы с последующей нормализацией. Экспериментальным методом выбирается тип и архитектура сети, а также ее гиперпараметры. Оценка качества работы сети производится методом кросс-валидация по k-блокам. Для нахождения оптимальной комбинации активационных функций с различными оптимизаторами проводятся экспериментальные исследования с дальнейшим анализом результатов.
Эксперименты реализованы на языке программирования Python c пакетами библиотек KERAS, TensorFlow и Matplotlib, а также в облачной платформе Colaboratory от компании Google.
Отличительной особенностью предлагаемого метода является то, что полученная модель прогнозирования легко может адаптироваться к новым данным, что часто происходит при бурении скважин на новых месторождениях.