Некоторые модели оптимальных траекторий сближения космического аппарата с астероидом
Аннотация
Движение космического аппарата рассматривается в области, находящейся вне сфер действия планет Солнечной системы, гравитационное действие астероида определяется в рамках ограниченной задачи двух тел. Постановка динамической задачи выполнена для поступательного движения космического аппарата относительно астероида с учетом собственного вращения небесного тела. Построение оптимальных траекторий в задаче сближения космического аппарата с астероидом выполняется методами вариационного исчисления. Сформулирована вариационная задача с ограничениями на управление в виде неравенств, решение которой построено путем сведения задачи к классической постановке по методу Валентайна. Даны решения уравнений Эйлера – Лагранжа для вариационной задачи с функционалом, связанным с расходом топлива реактивных двигателей. Получены численно-аналитические решения для частных случаев в условиях пренебрежения гравитацией астероида, рассматриваемых без учета кориолисовых сил инерции космического аппарата и с учетом этих сил. Оптимальное управление, полученное в этих решениях, является непрерывным (гладким или кусочно-гладким) или кусочно-непрерывным с одной или несколькими точками переключения, в зависимости от параметров задачи. Для обоснования оптимальности использованы условия Лежандра. Рассмотрено влияние начальных параметров движения космического аппарата, времени полета, величины максимальной тяги и величины угловой скорости астероида на вид управления и траектории. Представленный в статье метод изучения движения космического аппарата вблизи астероида позволяет получить численные оценки параметров полета, которые могут быть использованы при планировании миссии сближения.