O точности численных методов решения уравнений Вольтерра I рода в задачах теплопереноса
Аннотация
Статья посвящена исследованию точности методов решения задачи измерения, возникающей при определении температуры внутри объекта, подвергаемого влиянию внешнего управляющего теплового воздействия. Подход к построению численного решения задачи измерения, связанной с проблемой определения температуры, основан на сведении первоначальной задачи к решению интегрального уравнения, характеризующего прямую зависимость температуры от измеряемых величин. Интегральное уравнение получено с помощью прямого и обратного преобразований Лапласа с привлечением регуляризующего подхода и математического аппарата теории обратных задач. Результирующее интегральное уравнение относится к классу уравнений Вольтерра I рода типа свертки с ядром, имеющим специфические особенности. В данной работе исследуется точность численных методов решении интегрального уравнения со специфическим ядром с точки зрения механизмов реализации машинной арифметики. Вычислительные схемы методов основаны на использовании product integration method, квадратуры средних прямоугольников. В работе также приведены результаты исследования погрешности вычислительной схемы оптимального по порядку метода, основанного на применении преобразований Фурье и метода проекционной регуляризации. Метод применяется для непосредственного решения исходной задачи без перехода к интегральной модели и позволяет получать численные решения с гарантированной точностью. С целью получения экспериментальной оценки точности численных методов и сравнительного анализа машинной точности методов интегральной аппроксимации и оптимального по порядку метода проведен вычислительный эксперимент. Результаты эксперимента свидетельствуют о принципиальной возможности получения численных решений задачи измерения с высоким уровнем точности.