Особенности применения деревьев решений в задачах классификации
Аннотация
Рассматривается применение деревьев решений в задачах классификации. В последние годы деревья решений широко применяются в задачах компьютерного зрения, таких как распознавание объектов, классификация текстов, распознавание жестов, обнаружение спама, обучение ранжированию в информационном поиске, семантическая сегментация и кластеризация данных. Этому способствуют такие отличительные особенности деревьев решений как интерпретируемость, управляемость, возможность автоматического отбора информативных признаков. Однако имеется и ряд принципиальных недостатков, из-за которых задача обучения деревьев решений существенно усложняется. В статье приводится анализ преимуществ и недостатков деревьев решений, рассматриваются вопросы обучения и тестирования деревьев решений. Особое внимание уделяется проблемам сбалансированности обучающей выборки. Рассматриваются также леса решений и методы их обучения. Приводится краткий обзор методов снижения взаимозависимости ошибок деревьев решений при обучении лесов решений. Предлагаются методы преодоления недостатков деревьев решений, приводятся результаты работы данных методов.Опубликован
																			2015-11-02
																	
				Выпуск
Раздел
								Информатика и вычислительная техника