Исследование нелинейной цифровой фильтрации сигналов с использованием генеративно-состязательной нейронной сети
Аннотация
В статье приведены результаты исследования, а также структурные схемы и параметры составляющих генеративно-состязательной нейронной сети. Приведены графические изображения результатов фильтрации радиотехнических сигналов. Сделаны выводы о возможностях применения данных нейронных сетей. Цель исследования: обоснование возможностей использования генеративносостязательных искусственных нейронных сетей для решения задач цифровой обработки радиотехнических сигналов. Материалы и методы. Для оценки результатов цифровой фильтрации зашумленных сигналов использовался метод математического моделирования в среде MATLAB. В качестве тестовых сигналов были взяты: синусоида, сигнал в виде суммы синусоид, модель реального радиотехнического информационного сигнала. В качестве шумовой составляющей используется белый гауссовский шум. Также проводится фильтрация сигнала, в котором отсутствует фрагмент определенной длинны. Была сгенерирована обучающая выборка для нейронной сети генератора, состоящая из зашумленных тестовых сигналов. Была также сгенерирована обучающая выборка нейронной сети дискриминатора, состоящая из тестовых сигналов, не содержащих шума. Результаты. На основе проведенного моделирования сделан вывод о том, что генеративно-состязательная нейронная сеть успешно решает задачи выделения полезного сигнала в смеси его с шумом различной физической природы. Такая нейросетевая структура способна также восстановить полезный сигнал, если в нем отсутствует какая-либо часть в результате воздействия внешних помех. Заключение. Существующие методы цифровой фильтрации радиотехнических сигналов требуют определенных трудовых и временных затрат, связанных с расчетом цифровых фильтров. Также при проектировании фильтров высоких порядков возникает сложность при проведении расчета данных фильтров. Идея использования нейронной сети в задачах фильтрации позволяет значительно уменьшить время проектирования фильтра, упростив, таким образом, процесс его реализации. Нейронная сеть, являющаяся самообучаемой системой, может находить решения, недоступные для обычных алгоритмов цифровой фильтрации. Результаты данной работы могут найти свое применение в области цифровой обработки сигналов и в развитии программно-конфигурируемого радио.Опубликован
2022-05-17
Выпуск
Раздел
Краткие сообщения