Гибридная модель эффективного представления данных в беспроводных транспортных сетях с динамической топологией VANET
Аннотация
В настоящий момент системы информирования о дорожном движении требуют агрегирования больших данных для предоставления рекомендаций транспортным средствам в действующих условиях, что приводит к повышению комфорта пользователей. Основным инструментом повышения уровня безопасности стало своевременное информирование участников движения о текущей ситуации на дороге, погодных условиях и т. п. В этом случае если объект сети будет подвержен атаке и данные при передаче будут заменены, то по всей зоне видимости сегмента VANET возможно раскрытие конфиденциальной информации, создание аварийных ситуаций и т. д. В этой связи наиболее остро встает вопрос обеспечения безопасности, в том числе при передаче трафика, и проведения дополнительного анализа больших данных об аномалиях и проводимых несанкционированных действиях. Цель исследования. Разработать гибридную модель эффективного размещения исходных и промежуточных данных в беспроводных транспортных сетях с динамической топологией VANET, являющуюся по сути структурным представлением программно-конфигурируемой сети и инструментов проведения граничных вычислений, с возможностью оптимально относительно времени анализировать данные узлов сети и выявлять аномалии. Методы. Рассмотренный подход Edge computing состоит в расположении вычислительных мощностей в географически распределенных вычислительных устройствах ближе к конечным пользователям. Программно-конфигурируемые сети SDN передают часть функций управления и физической передачи с маршрутизаторов и коммутаторов, уменьшая нагрузку. В рамках данного исследования разработан алгоритм RD – протокол передачи и обработки промежуточных данных. Для проведения кластеризации ТС на сегменте сети использован метод обучения без учителя DBSCAN. Предварительный анализ аномального трафика проведен на основе моделей нейронных сетей RNN с кратковременной памятью. Результаты. Разработанная гибридная модель эффективного размещения исходных и промежуточных данных позволяет быстрее реагировать на несанкционированные действия. Заключение. Результаты, полученные в ходе проведенного исследования, подтверждают необходимость внедрения и масштабирования гибридной модели с граничными вычислениями на практике.