ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ИНКРЕМЕНТНОГО ОБУЧЕНИЯ НЕЙРОННОЙ СЕТИ
Аннотация
Настоящее время характеризуется беспрецедентным ростом объемов информационных потоков. Обработка информации лежит в основе решения многих практических задач. Спектр приложений интеллектуальных информационных систем чрезвычайно обширен: от управления непрерывными технологическими процессами в реальном времени до решения коммерческих и административных задач. Интеллектуальные информационные системы должны обладать таким основным свойством, как способность быстро обрабатывать динамические входящие данные в реальном времени. Кроме того, интеллектуальные информационные системы должны уметь извлекать знания из ранее решенных задач. В последние годы инкрементное обучение нейронной сети стало одной из актуальных тем в области машинного обучения. По сравнению с традиционным машинным обучением, инкрементное обучение позволяет усваивать новые знания, поступающие постепенно, и сохранять старые знания, полученные от предыдущих задач. Такое обучение должно быть полезно в интеллектуальных системах, где данные поступают динамически. Цель исследования. Рассмотреть концепции, проблемы и методы инкрементного обучения нейронной сети, а также оценить возможность его использования при разработке интеллектуальных систем. Материалы и методы. Рассматривается идея инкрементного обучения, полученная при анализе обучения человека в течение жизни. Представлены термины, которыми описывается инкрементное обучение в литературе. Описаны препятствия, которые возникают при достижении цели инкрементного обучения. Приводится описание трех сценариев инкрементного обучения, среди которых выделяют инкрементное обучение по классам. Дается анализ методов инкрементного обучения, сгруппированных в семейство техник в соответствие с решением проблемы катастрофического забывания. Представлены возможности, которые дает инкрементное обучение в сравнении с традиционным машинным обучением. Результаты. В статье делается попытка оценить текущее состояние и возможность использования инкрементного обучения нейронной сети, выявить отличия от традиционного машинного обучения. Заключение. Инкрементное обучение полезно для будущих интеллектуальных систем, поскольку оно позволяет поддерживать существующие знания в процессе обновления, избегать обучения с нуля, динамически регулировать способность модели к обучению в соответствии с новыми доступными данными.