ПРИМЕНЕНИЕ ТЕХНОЛОГИЙ КОМПЬЮТЕРНОГО ЗРЕНИЯ ДЛЯ РАЗРАБОТКИ МОДЕЛИ РАСПОЗНАВАНИЯ ПОРАЖЕНИЙ КУЛЬТУРНЫХ РАСТЕНИЙ

Авторы

  • Наталья Александровна Янишевская Автор
  • Ирина Павловна Болодурина Автор

Аннотация

В Российской Федерации агропромышленный комплекс является одной из лидирующих отраслей экономики с объемом внутреннего валового продукта 4,5 %. России принадлежат 10 % всех пахотных земель мира. Согласно данным о посевных площадях по культурам в 2020 году, большую часть сельскохозяйственных площадей России занимает пшеница. Российская Федерация занимает третье место в рейтинге стран-лидеров по производству данного вида зерновых культур, а также лидирующие позиции по ее экспорту. Бурая (листовая) и линейная (стеблевая) ржавчина – наиболее вредоносная болезнь зерновых культур. Она является причиной изреженности посевов пшеницы и приводит к резкому снижению урожайности. Поэтому одной из главных задач аграриев является сохранение урожая от заболеваний. Помочь справиться с этой задачей способно применение таких областей искусственного интеллекта, как компьютерное зрение, машинное обучение и глубокое обучение. Данные технологии искусственного интеллекта позволяют успешно решать прикладные задачи агропромышленного комплекса при помощи автоматизированного анализа фотоматериалов. Цель исследования. Рассмотреть применение методов компьютерного зрения для задачи классификации поражений культурных растений на примере пшеницы. Материалы и методы. Набор данных CGIAR Computer Vision for Crop Disease для задачи распознавания поражений культурных растений взят из открытого источника Kaggle. Предлагается использовать подход к распознаванию поражений культурных растений с использованием известных нейросетевых моделей ResNet50, DenseNet169, VGG16 и EfficientNet-B0. На вход нейросетевым моделям поступают изображения пшеницы. Выходом нейронных сетей является класс поражения растения. Для преодоления эффекта переобучения нейронных сетей исследуются различные техники регуляризации. Результаты. Приводятся результаты качества классификации, оцениваемые с использованием метрики F1-score, являющейся среднегармоническим между мерами Precision и Recall. Заключение. В результате проведенного исследования установлено, что наилучшую точность распознавания показала модель DenseNet c применением комбинации технологии трансферного обучения и технологий регуляризации DropOut и L2 для преодоления эффекта переобучения. Применение данного подхода позволило достичь точности распознавания 91 %.

Биографии авторов

  • Наталья Александровна Янишевская
    студент кафедры прикладной математики
  • Ирина Павловна Болодурина
    д-р техн. наук, профессор, заведующий кафедрой прикладной математики

Опубликован

2021-08-09

Выпуск

Раздел

Информатика и вычислительная техника