ПРОГНОЗИРОВАНИЕ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЭЛЕКТРОЦЕНТРОБЕЖНОГО НАСОСА НА ОСНОВЕ НЕЙРОСЕТЕВОГО МОДЕЛИРОВАНИЯ

Авторы

  • Игорь Владимирович Каракулов Автор
  • Андрей Владимирович Клюев Автор
  • Валерий Юрьевич Столбов Автор

Аннотация

Рассматривается задача прогнозирования состояния электроприводного центробежного насоса в процессе эксплуатации. Простои и недоборы, вызванные поломкой насоса, приводят к потерям при добыче нефти и требуют времени для замены оборудования. При помощи прогнозирования технического состояния появляется возможность минимизировать затраты на обслуживание насоса и сократить время простоя скважины. Для анализа состояния систем используют экспертные системы, основанные на знаниях, и методы предиктивной аналитики, основным из которых является использование моделей машинного обучения.
В работе используются методы, основанные на искусственных нейронных сетях. Цель исследования. Проработка вопросов возможности прогнозирования технического состояния насоса за счет использования современных моделей машинного обучения. Материалы и методы. Прогнозирование технического состояния оборудования осуществляется при помощи анализа временных рядов. Данные получены с телеметрических датчиков системы мониторинга, установленных на электроцентробежном насосе. Исходные данные снимались с интервалом в одну минуту. Была осуществлена предобработка исходных данных. Данные были очищены от пиков, которые явно выбиваются из нормального режима работы, и убраны периоды простоя скважины, на которых фазное напряжение равнялось нулю. Для прогнозирования временных рядов используется искусственная нейронная сеть с типом нейронов LSTM. Прогнозирование временного ряда осуществлялось на пять дней. Оценка параметров системы на длительные периоды времени позволяет оценить состояние ее компонентов и предотвращать поломку оборудования. Результаты. Исследованы возможности нейросетей, обученных на основе данных телеметрических датчиков системы мониторинга, предсказывать значения вертикальной вибрации насоса. Обосновано применение нейросетевой модели в виде LSTM, показавшей хорошие результаты при анализе временных рядов. Выявлено, что нейросети хорошо улавливают тренд внутри временного ряда, что говорит о возможности их применения совместно с экспертной системой. Заключение. Предложенные методы и модели апробированы на реальных данных, что подтверждает возможность их использования при разработке интеллектуальной информационной системы управления техническим состоянием электроцентробежного насоса в процессе эксплуатации.

Биографии авторов

  • Игорь Владимирович Каракулов
    Каракулов Игорь Владимирович, аспирант кафедры вычислительной математики, механики и биомеханики, Пермский национальный исследовательский политехнический университет,
    г. Пермь; karakuloviv@yandex.ru
  • Андрей Владимирович Клюев
    Клюев Андрей Владимирович, канд. физ.-мат. наук, доцент кафедры вычислительной математики, механики и биомеханики; Пермский национальный исследовательский политехнический университет, г. Пермь; kav@gelicon.biz
  • Валерий Юрьевич Столбов
    Столбов Валерий Юрьевич, д-р техн. наук, профессор, заведующий кафедрой вычислительной математики, механики и биомеханики; Пермский национальный исследовательский политехнический университет, г. Пермь; valeriy.stolbov@gmail.com

Опубликован

2020-11-30

Выпуск

Раздел

Управление в технических системах