Разработка имитационной модели движения горно-выработочной машины
Аннотация
Определена важность решения научной задачи идентификации уклонений горно-выработочной машины при добыче калийной руды и других руд. Показана невозможность непосредственного применения для этого как существующих систем позиционирования внутри зданий, так и предлагаемых на рынке систем подземного позиционирования. Причиной являются сложные условия в ходе выработки и высокая вибрация. Предложено определять уклонение горно-выработочной машины по показаниям установленных на бортах датчиков расстояния до стенки забоя. В качестве идентифицирующей подсистемы в дальнейшем будет использоваться нейронная сеть. Для ее обучения необходима модель, позволяющая имитировать данные с датчиков при наперед заданном уклонении. Предложено определять показания датчиков простым геометрическим способом путем трассировки внутри пиксельного следа, оставляемого на экране монитора отрезком режущей кромки горно-выработочной машины. Создана имитационная модель двумерного подземного движения горно-выработочной машины, позволяющая задавать уклонения разных видов и имитировать показания датчиков расстояния при этом. Расчеты базируются на определении точки вращения горно-выработочной машины в ходе малого уклонения от прямолинейного курса движения. Далее явным методом определяется следующее положение машины и пиксели, закрашиваемые отрезком режущей кромки при перемещении. Количество пикселей между датчиком и не закрашенной областью в направлении, перпендикулярном оси горно-выработочной машины, переводится через масштаб в расстояние до стенки забоя. При этом имитируется также погрешность датчиков с заданным наперед разбросом и его статистическим распределением. Показана возможность качественной идентификации уклонения по показаниям четырех датчиков, а также возможность использования модели для обучения нейронной сети.