О задаче по восстановлению коэффициентов-функций времени источников специального вида в параболическом уравнении
Аннотация
Исследуется обратная задача по идентификации коэффициентов, зависящих только от времени, при источнике специального вида в линейных параболических уравнениях с точечными условиями переопределения. К исследуемым обратным задачам, в частности, приводятся краевые задачи с нелокальными (интегральными) краевыми условиями. Специфика рассматриваемой в данной работе обратной задачи заключается в том, что восстанавливаемые коэффициенты находятся при свободном члене и они зависят только от временной переменной. Предлагается методика численного решения задачи с применением метода прямых, основанная на использовании специального вида представления решения. Методом прямых задача приводится к параметрически обратной задаче относительно обыкновенной системы дифференциальных уравнений. Для ее решения предложено представление этого решения в специальном виде. Построены вспомогательные краевые задачи, которые определяют решение исходной задачи. Наиболее существенным в данной работе является то, что предлагаемый подход к численному решению исследуемой обратной задачи по идентификации коэффициентов не требует (в отличие от ранее известных методов) построения каких-либо итерационных процедур. Приводятся результаты численных экспериментов виде таблиц и графиков, полученных при решении тестовой задачи, и их анализ.