О декодере мягких решений двоичных кодов Рида—Маллера второго порядка
Аннотация
Построена общая модель помехоустойчивого двоичного канала передачи данных, предназначенная для использования с различными декодерами мягких решений. Линия связи, рассматриваемая в модели, является дискретной по входу и непрерывной по выходу. На ее вход поступают дискретные сигналы из мультипликативного двоичного алфавита, а в силу искажений, действующих в линии связи, на выходе после фильтрации формируются символы из мультипликативной группы поля вещественных чисел, которые затем подаются на вход декодера помехоустойчивого кода. Мягкие и вероятностные декодеры помехоустойчивых кодов позволяют исправлять большее количество ошибок в кодовых словах, чем гарантируется минимальным расстоянием используемого кода. В работе рассмотрен вероятностный декодер мягких решений Сидельникова—Першакова для кодов Рида—Маллера второго порядка в модификации, предложенной П. Лоидрю и Б. Саккуром. Ранее эффективность этих декодеров была подтверждена с помощью имитационных экспериментов, но теоретическое обоснование отсутствовало. В настоящей работе сформулировано требование к каналу связи, названное гладкостью канала, при выполнении которого теоретически доказана корректность этого декодера в случае, когда количество ошибок на каждое кодовое слово не превосходит половины кодового расстояния. В основе доказательства лежит использование теории квадратичных форм и методов дифференциального исчисления в кольце полиномов нескольких переменных над полями Галуа.