Об одном методе восстановления пропущенных значений потокового временного ряда в режиме реального времени

Авторы

  • Михаил Леонидович Цымблер Автор
  • Вячеслав Александрович Полонский Автор
  • Алексей Артемьевич Юртин Автор

Аннотация

Проблема восстановления пропущенных значений потокового временного ряда в режиме реального времени возникает в широком спектре практических приложений цифровой индустрии и интернета вещей. В статье предложен новый метод восстановления на основе совместного применения технологий интеллектуального анализа временных рядов и искусственных нейронных сетей. Метод предполагает три этапа восстановления: предварительная обработка данных, распознавание и реконструкция. Предварительная обработка предполагает однократную предварительную подготовку обучающих выборок данных. Распознавание и реконструкция реализуются с помощью нейронных сетей, обучаемых на указанных выборках. Предварительной обработке подвергается заранее сохраненный фрагмент потокового временного ряда без пропусков, в котором выполняется поиск набора типичных подпоследовательностей (сниппетов). Распознавание реализуется с помощью сверточной нейронной сети, на вход которой подается вектор из элементов временного ряда, предшествующих пропуску. Распознаватель выдает сниппет, на который более всего похожа входная подпоследовательность. Реконструкция реализуется с помощью рекуррентной нейронной сети, на вход которой подается конкатенация вывода распознавателя и вектора элементов ряда, предшествующих пропуску. Реконструктор выдает восстановленное значение. Представлены результаты экспериментов, показывающих высокую точность восстановления и преимущество предложенного метода перед аналогами.

Биография автора

  • Михаил Леонидович Цымблер
    нач. отдела интеллектуального анализа данных и виртуализации ЛСМ ЮУрГУ

Опубликован

2021-12-17

Выпуск

Раздел

Информатика, вычислительная техника и управление